Department of Mathematics \& Computer Science
Freie Universität Berlin
Prof. Dr. Ralf Kornhuber, Maren-Wanda Wolf

Exercise 3 for the lecture
 Numerics II
 WS 2011/12

Due: till Thursday, 17. November 12 o'clock

Problem 1 (2 TP)
Let $\Phi^{t}=\exp (t)$. Show that if Ψ^{τ} is consistent with Φ^{t} with order p, then

$$
\Psi^{\tau}=R(z)=\exp (z)+\mathcal{O}\left(z^{p+1}\right) \quad \text { for } z \rightarrow 0
$$

with $z=\lambda \tau$.

Problem 2 (3 TP)
Let $\Psi^{\tau}: \mathrm{R}^{n} \rightarrow \mathrm{R}^{n}$ the discrete flux operator of the implicit trapezoidal rule with stepsize τ.
a) Consider the linear system

$$
x^{\prime}(t)=A x(t)
$$

Show that Ψ^{τ} can be written as

$$
\Psi^{\tau}=R(\tau A)
$$

where R is a rational function of the matrix τA.
b) Under what conditions on τ is Ψ^{τ} A-stable? Is asymptotic stability inherited from the continuous problem?

Problem 3 (3 TP)
Compute the Butcher scheme for the collocation method with the supporting points of the Simpson rule.

Problem 4 (4 TP)
a) Compute the time step restriction for the method of Runge $\Psi^{\tau}=x+\tau f\left(x+\frac{\tau}{2} f(x)\right)$ applied to the linear system

$$
x^{\prime}(t)=-\left(\begin{array}{cc}
2 & -1 \tag{1}\\
-1 & 2
\end{array}\right) x(t)
$$

b) Plot the stability domain for the method of Runge and visualize the time step restriction for (1).

Problem 5 (6 PP)
a) Implement the (possibly implicit) Runge-Kutta method for the linear system

$$
x^{\prime}(t)=M x(t), \quad t \in(\mathrm{I}(1), \mathrm{I}(2)] \quad x(\mathrm{I}(1))=\mathrm{x}_{0}
$$

in matlab as function $[x, t, k]=$ RungeKuttaLinear ($\mathrm{M}, \mathrm{x} 0$, $\mathrm{I}, \mathrm{tau}, \mathrm{b}, \mathrm{A}$), where $M, x 0$, I, and tau denote the system matrix, the initial value, the time interval and the step size, respectively and the Butcher scheme is given by b, A. The returned values x , t , and k should contain the solution at each time step, the time steps, and the intermediate vectors k_{i} for all time steps, respectively.
b) Test your program with (1) and the initial value $x(0)=(1,2)^{T}$ on the interval $(0,5]$ with the step sizes $\tau=10^{-3}, 10^{-2}, 10^{-1}, 1$ for the method of Runge, and the Gauß method of order 4. Plot the discretization error and discuss the numerical results.
c) Evaluate the collocation polynomials u of the Gauß method of order 4 applied to the above problem with step size $\tau=1$ from the intermediate vectors k_{i} on a sample grid $\Theta_{i}=i \frac{\tau}{100}, i=0, \ldots, 100$ and plot the discrete trajectories given by the values of u.

