Department of Mathematics \& Computer Science
Freie Universität Berlin
Prof. Dr. Ralf Kornhuber, Maren-Wanda Wolf

Exercise 9 for the lecture
Numerics II
WS 2011/12

Due: till Thursday, 12. January 12 o'clock

Problem 1 (5 TP)
a) Show that the symplectic Euler method is symplectic.
b) Show that the trapezoidal rule is symplectic if the Hamiltonian is quadratic, i.e. $H(y)=y^{T} C y$ holds with a symmetric real matrix C.
c) Show that the trapezoidal rule is not symplectic in general.

Problem 2 (4 TP)
Consider the system $q^{\prime}=p ; p^{\prime}=f(q)$.
The explicit one-step method given by

$$
\begin{aligned}
p_{n+\frac{1}{2}} & =p_{n}+\frac{\tau}{2} f\left(q_{n}\right) \\
q_{n+1} & =q_{n}+\tau p_{n+\frac{1}{2}} \\
p_{n+1} & =p_{n+\frac{1}{2}}+\frac{\tau}{2} f\left(q_{n+1}\right)
\end{aligned}
$$

is called Störmer-Verlet method.

Show that the Störmer-Verlet method is symplectic and has second order.

Problem 3 (5 PP)
Consider the pendulum equation in polar coordinates

$$
\binom{q^{\prime}}{p^{\prime}}=\binom{\frac{1}{m} p}{-m \frac{g}{r_{0}} \cos q} \quad\binom{q}{p}(0)=\binom{q_{0}}{p_{0}}
$$

where q, g, m, and r_{0} denote the angle, the gravity, the mass and the radius, respectively.
a) Implement the Störmer-Verlet method for this equation in matlab as function $[p, q, t]=$ StörmerVerlet (m, g, r0, p0, q0, I, tau), where (m, g, r0), ($\mathrm{p} 0, \mathrm{q} 0$), I, and tau denote the problem parameters, the initial values, the time interval and the step size, respectively.
b) Test your program with the radius $r_{0}=10 \mathrm{~cm}$, the mass $m=100 \mathrm{~g}$, and the gravity of the moon. Use the time interval $[0 s, 20 \mathrm{~s}]$ with the initial value $p_{0}=0 \frac{\mathrm{kgm}}{\mathrm{s}}$, $q_{0}=0 \mathrm{~m}$ for various time step sizes.
c) Plot the solution in the phase space, the solution in Euclidean coordinates, and the associated Hamiltonian H.

