Lösungsskizzen zu Übung 8

Dominik Puhst

28. Dezember 2012

Aufgabe 2

- a) Es sei der Vektorraum $\mathbb{R}^{\mathbb{N}}$ alle reellen Folgen gegeben. Hier ist zu zeigen, dass die Menge $c_{00} := \{a \in \mathbb{R}^{\mathbb{N}} : \exists N \in \mathbb{N} : a_n = 0 \forall n > N\}$ einen Untervektorraum bildet. Wie gewohnt sind dazu die Teilmengeneigenschaft ist offensichtlich erfüllt die dreit Kriterien nachzuweisen.
 - (i) Die Nullfolge ist ziemlich abbrechend, N kann hier sogar völlig beliebig gewählt werden. Deshalb gilt $c_{00} \neq \emptyset$.
 - (ii) Seien $a, b \in c_{00}$. Dann existieren $N_a, N_b \in \mathbb{N}$, sodass $a_n = 0$ für alle $n > N_a$ und $b_n = 0$ für alle $n > N_b$. Es folgt

$$(a+b)_n = a_n + b_n = 0 + 0 = 0 \quad \forall n > N := \max\{N_a, N_b\}$$

und somit $a + b \in c_{00}$

- (iii) Sei $a \in c_{00}, \lambda \in \mathbb{R}$, dann gibt es wieder ein $N \in \mathbb{N}$, sodass $a_n = 0$ für alle n > N und für eben solche n > N gilt dann auch $(\lambda a)_n = \lambda a_n = \lambda \cdot 0 = 0$, weshalb auch $\lambda a \in c_{00}$ wahr ist.
- b) Wir wollen nun zeigen, dass $\{e^k : k \in \mathbb{N}\}$ mit der gegebenen Definition der $e^k \in c_{00}$ eine Basis von c_{00} ist. Dies folgt direkt daraus, dass sich wegen $e^k_j = 0$ für alle $k \neq j$ jedes $a \in c_{00}$ eindeutig wie folgt als endliche Linearkombination der e^k darstellen lässt:

$$a \in c_{00} \implies \exists N \in \mathbb{N} : a_n = 0 \forall n > N \implies a = \sum_{j=1}^N aje^j$$

c) Da wir in b) eine Basis von c_{00} gefunden haben, welche unendlich viele Elemente enthält, gilt $\dim(c_{00}) = \infty$. Alternativ kann ohne Verwendung von b) ein Widerspruchsbeweis mit der Annahme, es gebe eine endliche Basis, durchgeführt werden. So oder so folgt $\dim(c_{00}) \leq \dim(\mathbb{R}^{\mathbb{N}})$, weil c_{00} ein Untervektorraum des $\mathbb{R}^{\mathbb{N}}$ ist und somit $\dim(\mathbb{R}^{\mathbb{N}}) = \infty$.

Aufgabe 4

Sei $A \in K^{m \times n}$ eine Matrix über dem Körper K, welche sich in Zeilenstufenform befindet. Es seien zudem $1 \leq j_1 \leq \cdots \leq j_r \leq n$ die sortierten Spaltenindizes der Zeilenköpfe. Aufgrund der Tatsache, dass es r solcher Zeilenköpfe gibt, ist zr(A) = r. Wir wollen nun zeigen, dass die Menge der Spalten $\{b^{j_1}, \ldots, b^{j_r}\}$ eine Basis von ZR(A) bildet.

(i) **l.u.:** Da die b^j die Spalten der Zeilenköpfe sind, gilt für $1 \le k \le r$: $b_i^{j_k} = 0$ falls $m \ge i > k$ und $b_i^{j_k} \ne 0$, falls i = k. Die Einträge $b_i^{j_k}$ mit $1 \le i < k$ sind beliebig, spielen aber bei der folgenden Betrachtung keine Rolle. Sei nun also

$$\sum_{k=1}^{r} \lambda_k b^{j_k} = 0 \iff \begin{pmatrix} b_1^{j_1} & b_1^{j_2} & \dots & b_1^{j_{r-1}} & b_1^{j_r} \\ 0 & b_2^{j_2} & \dots & b_2^{j_{r-1}} & b_2^{j_r} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & b_{r-1}^{j_{r-1}} & b_{r-1}^{j_r} \\ 0 & 0 & \dots & 0 & b_r^{j_r} \end{pmatrix} \cdot \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_{r-1} \\ \lambda_r \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix},$$

so folgt aus der letzten Spalte direkt, dass $\lambda_r = 0$, aus der vorletzten daraufhin, dass $\lambda_{r-1} = 0$ und so weiter bis schließlich aus der ersten Zeile $\lambda_1 = 0$ folgt.

(ii) Schritt zu Basis: Es gilt offenbar, dass

$$SR(A) \subset span \left\{ \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ 0_r \\ 0 \\ \vdots \\ 0_m \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \\ 0_r \\ 0 \\ \vdots \\ 0_m \end{pmatrix}, \dots, \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ 0_r \\ 0 \\ \vdots \\ 0_m \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ 0_r \\ 0 \\ \vdots \\ 0_m \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ \vdots \\ 0_m \end{pmatrix} \right\},$$

da in jedem Vektor des Spaltenraumes alle Einträge einer Zeile mit Index größer r Null sind. Wir haben somit einen Oberraum des Spaltenraumes gefunden, der Dimension r hat. Wegen der linearen Unabhängigkeit unserer r Vektoren aus (i) ist aber $\dim(SR(A)) \geq r$ und demnach folgt $\dim(SR(A)) = r$. Unsere r linear unabhängigen Vektoren bilden also ein maximal linear unabhängiges System und sind somit eine Basis.

Als letzten Schritt, müssen wir in dieser Aufgabe noch zeigen, dass gilt zr(A) = sr(A). Aus unserer Vorbemerkung bezüglich des Zeilenranges und unserer Basis des Spaltenraumes folgt dies direkt.