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Figure 1.1: Simulation of a butane molecule and its approximation by a 3-state
Markov chain (states in blue, green and yellow; solvent molecules not shown).

1 Day 1, 16.10.2012: Modelling issues

1.1 Time-discrete Markov chains

Time index set I is discrete, e.g. I ✓ N and state space S is countable or finite,
e.g. S = {s

1

, s
2

, s
3

} (see Figure 1.1). Key objects are transition probabilities.
For a state space S = {1, . . . , n}, the transition probabilities p

ij

satisfy

p
ij

= P (X
t+1

= j | X
t

= i)

and yield a row-stochastic matrix P = (p
ij

)
i,j2S

.

1.2 Markov jump processes

These are time-continuous, discrete state-space Markov chains. Time index set
I ✓ R

+

, S discrete. For a fixed time step h > 0, the transition probabilities are
given by (see Figure 1.2)

P (X
t+h

= s
j

|X
t

= s
i

) = h`
ij

+ o(h)

where L = (`
ij

)
i,j2S

and P
h

are matrices satisfying P
h

= exp (hL).
Note: the matrix L is row sum zero, i.e.

P
j

`
ij

= 0. The waiting times for
the Markov chain in any state s

i

are exponentially distributed in the sense that

P (X
t+s

= s
i

, s 2 [0, ⌧) |X
t

= s
i

) = exp (`
ii

⌧)
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Figure 1.2: Simulation of butane: typical time series of the central dihedral
angle (blue: metastable di↵usion process, red: Markov jump process)

and the ‘average waiting time’ is �`
ii

(by definition of the exponential distribu-
tion).

Note: the spectrum of the matrix P
h

is contained within the unit disk, i.e.
for every eigenvalue � of P

h

, |�|  1. This property is a consequence of P
h

being
row-stochastic, i.e. that

P
j

P
h,ij

= 1. Since P
h

= exp(hL) it follows that

�(P
h

) ⇢ D :=
�
x 2 R2 | |x|  1

 , �(L) ⇢ C� = {y 2 C |Re(y)  0}
Example 1.1. Suppose one has a reversible reaction in which one has a large
collection of N molecules of the same substance. The molecules can be either
in state A or state B and the molecules can change between the two states. Let
k+ denote the rate of the reaction in which molecules change from state A to B
and let k� denote the rate at which molecules change from state B to A.

For t > 0, consider the quantity

µA

i

(t) := P (number of molecules in state A at time t is i)

where i = {0, . . . , N}. One can define quantities µB

i

(t) in a similar way, and
one can construct balance laws for these quantities, e.g.

dµA

i

(t)

dt
= k+µA

i+1

(t) + k�µA

i�1

(t)� (k+ + k�)µA

i

(t).

The above balance law can be written in vector notation using a tridiagonal
matrix L. By adding an initial condition one can obtain an initial value problem

dµA(t)

dt
= L>µA(t), µA(0) = µ

0

.

The solution of the initial value problem above is

µA(t) = µ
0

exp
�
tL>� .
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1.3 Stochastic di↵erential equations

These are time-continuous, continuous state space Markov chains. Stochastic
di↵erential equations (SDEs) may be considered to be ordinary di↵erential equa-
tions (ODEs) with an additional noise term (cf. Figure 1.2). Let b : Rn ! Rn be
a smooth vector field and let x(t) be a deterministic dynamical system governed
by the vector field b(·). Then x(t) evolves according to

dx

dt
= b(x), x(0) = x

0

. (1.1)

Now let (B
t

)
t>0

be Brownian motion in Rd, and let (X
t

)
t>0

be a dynamical
system in Rd which evolves according to the equation

dX
t

dt
= b(X

t

) +
dB

t

dt
. (1.2)

The additional term dBt
dt

represents ‘noise’, or random perturbations from the
environment, but is not well-defined because the paths of Brownian motion are
nowhere di↵erentiable. Therefore, one sometimes writes

dX
t

= b(X
t

)dt+ dB
t

,

which is shorthand for

X
t

= X
0

+

Z
t

0

b(X
t

)dt+

Z
t

0

dB
t

.

The most common numerical integration method for SDEs is the forward
Euler method. If x is a C1 function of time t, then

dx

dt

����
t=s

= lim
h!0

x(s+ h)� x(s)

h
.

The forward Euler method for ODEs of the form (1.1) is given by

X
t+h

= X
t

+ hb(X
t

)

and for SDEs of the form (1.2) it is given by

X
t+h

= X
t

+ hb(X
t

) + ⇠
h

where 0 < h ⌧ 1 is the integration time step and the noise term ⇠ in the Euler
method for SDEs is modelled by a mean-zero Gaussian random variable.

For stochastic dynamical systems which evolve according to SDEs as in (1.2),
one can consider the probability that a system at some point x 2 Rd will be in
a set A ⇢ Rd after a short time h > 0:

P (X
t+h

2 A |X
t

= x) .

The associated transition probability density functions of these stochastic dy-
namical systems are Gaussian because the noise term in (1.2) is Gaussian.

What has been the generator matrix L in case of a Markov jump process is
an infinite-dimensional operator acting on a suitable Banach space. Specifically,

Lf(x
0

) = lim
t!0

E
x0 [f(Xt

)]� f(x
0

)

t
,

provided that the limit exists. Here f : Rn ! R is any measurable function and
E
x0 [·] denotes the expectation over all random paths of X

t

satisfying X
0

= x
0

.
L is a second-order di↵erential operator if f is twice di↵erentiable.
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2 Day 2, 23.10.2012: Probability theory basics

Suggested references: [10, 16]
Let (⌦, E ,P) be a probability space, where ⌦ is a set and E ✓ 2⌦ is a �-field

or �-algebra on ⌦, and P is a probability measure (i.e., P is a nonnegative,
countably additive measure on (⌦, E) with the property P(⌦) = 1).

2.1 Conditioning of random variables

Let A 2 E be a set of nonzero measure, i.e. P(A) > 0 and define E
A

to be the
set of all subsets of A which are elements of E , i.e.

E
A

:= {E ⇢ A | E 2 E} .
Definition 2.1 (Conditional probability, part I). For an event A and an event
E 2 E

A

, the conditional probability of E given A is

P(E|A) :=
P(E \A)

P(A)
.

Remark 2.2. Think of P
A

:= P(· |A) as a probability measure on the measurable
space (A, E

A

).

Given a set B 2 E , the characteristic or indicator function �
B

: ⌦ ! {0, 1}
satisfies

�
B

(x) =

(
1 x 2 B

0 x /2 B.

Definition 2.3 (Conditional expectation, part I). Let X : ⌦ ! R be a random
variable with finite expectation with respect to P. The conditional expectation
of X given an event A is

E(X|A) =
E [X�

A

]

P(A)
.

Remark 2.4. We have

E(X|A) =
1

P(A)

Z

A

XdP =

Z
XdP

A

.

Remark 2.5. Observe that P(E|A) = E [�
E

|A].

Up to this point we have only considered the case where A satisfies P(A) > 0.
We now consider the general case.

Definition 2.6 (Conditional expectation, part II). Let X : ⌦ ! R be an
integrable random variable with respect to P and let F ⇢ E be any sub-sigma
algebra of E. The conditional expectation of X given F is a random variable
Y := E [X|F ] with the following properties:

• Y is measurable with respect to F : 8B 2 B(R), Y �1(B) 2 F .

• We have Z

F

XdP =

Z

F

Y dP 8F 2 F .
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Remark 2.7. The second condition in the last definition amounts to the pro-
jection property as can be seen by noting that

E [X�
F

] =

Z

F

XdP =

Z

F

Y dP = E [Y �
F

] = E [E [X|F ]�
F

] .

By the Radon-Nikodym theorem [16], the conditional expectation exists and is
unique up to P-null sets.

Definition 2.8 (Conditional probability, part II). Define the conditional prob-
ability of an event E 2 E given A by P(E|A) := E [�

E

|A]

Exercise 2.9. Let X, Y : ⌦ ! R and scalars a, b 2 R. Prove the following
properties of the conditional expectation:

• (Linearity):
E [aX + bY |A] = aE [X|A] + bE [Y |A] .

• (Law of total expectation):

E [X] = E [X|A] + P(A) + E [X|Ac]P(Ac)

• (Law of total probability):

P(B) = P(B|A)P(A) + P(B|Ac)P(Ac).

Example 2.10. The following is a collection of standard examples.

• Gaussian random variables: Let X
1

, X
2

be jointly Gaussian with distri-
bution N(µ,⌃), where

µ =

✓
E[X

1

]
E[X

2

]

◆
, ⌃ =

✓
a b
b c

◆

such that ⌃ is positive definite. The density of the distribution is

⇢(x) =
1p

det(2⇡⌃)
exp


�1

2
(x� µ)> ⌃ (x� µ)

�

(Ex.: Compute the distribution of X
1

given that X
2

= a for some a 2 R.)

• (Conditioning as coarse-graining): Let Z = {Z
i

}M
i=1

be a partition of ⌦,
i.e. ⌦ = [M

i=1

Z
i

with Z
i

\ Z
j

= ; and define

Y (!) =
MX

i=1

E [X |Z
i

]�
Zi(!).

Then Y = E [X|Z] is a conditional expectation (cf. Figure 2.1)

• (Exponential waiting times): exponential waiting times are random vari-
ables T : ⌦ ! [0,1) with the memoryless property:

P (T > s+ t |T > s) = P (T > t) .

This property is equivalent to the statement that T has an exponential
distribution, i.e. that P(T > t) = exp(��t) for a parameter value � > 0.
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Figure 2.1: Simulation of butane, coarse-grained into three states Z
1

, Z
2

, Z
3

.

2.2 Stochastic processes

Definition 2.11 (Stochastic process). A stochastic process X = {X
t

}
t2I

is
a collection of random variables on a probability space (⌦, E ,P) indexed by a
parameter t 2 I ✓ [0,1). We call X

• discrete in time if I ✓ N
0

• continuous in time if I = [0, T ] for any T < 1.

How does one define probabilities for X? We provide a basic argument
to illustrate the possible di�culties in defining the probability of a stochastic
process in an unambiguous way. By definition of a stochastic process, X

t

=
X

t

(!) is measurable for every fixed t 2 I, but if one has an event of the form

E = {! 2 ⌦ | X
t

(!) 2 [a, b] 8t 2 I}
how does one define the probability of this event? If t is discrete, the �-additivity
of P saves us, together with the measurability of X

t

for every t. If, however, the
process is time-continuous, X

t

is defined only almost surely (a.s.) and we are
free to change X

t

on a set A
t

with P(A
t

) = 0. By this method we can change X
t

on A = [
t2I

A
t

, The problem now is that P(A) need not be equal to zero even
though P(A

t

) = 0 8t 2 I. Furthermore, P(E) may not be uniquely defined. So
what can we do? The solution to the question of how to define probabilities for
stochastic processes is to use finite-dimensional distributions or marginals.

Definition 2.12. (Finite dimensional distributions): Fix d 2 N, t
1

, . . . , t
d

2 I.
The finite-dimensional distributions of the stochastic process X for (t

1

, . . . , t
d

)
are defined as

µ
t1,...,td(B) := P

(Xtk
)k=1,...,d

(B) = P ({! 2 ⌦ |(X
t1(!), . . . , Xtd(!)) 2 B})

for B 2 B(Rd).
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Here and in the following we use the shorthand notation P
Y

:= P � Y �1 to
denote the push forward of P by the random variable Y .

Theorem 2.13. (Kolmogorov Extension Theorem): Fix d 2 N, t
1

, . . . , t
d

2 I,
and let µ

t1,...,td be a consistent family of finite-dimensional distributions, i.e.

• for any permutation ⇡ of (1, . . . , d),

µ
t1,...,td(B1

⇥ . . . B
d

) = µ
(t⇡(1),...,t⇡(d)

(B
⇡(1)

⇥ . . .⇥B
⇡(d)

)

• For t
1

, . . . , t
d+1

2 I, we have that

µ
t1,...,td+1(B1

⇥ . . . B
d

⇥ R) = µ
t1,...,td(B1

⇥ . . .⇥B
d

).

Then there exists a stochastic process X = (X
t

)
t2I

with µ
t1,...td as its finite-

dimensional distribution.

Remark 2.14. The Kolmogorov Extension Theorem does not guarantee unique-
ness, not even P-a.s. uniqueness, and, as we will see later on, such a kind of
uniqueness would not be a desirable property of a stochastic process.

Definition 2.15. (Filtration generated by a stochastic process X): Let F =
{F

t

}
t2I

with F
s

⇢ F
t

for s < t be a filtration generated by F
t

= � ({X
s

|s  t})
is called the filtration generated by X.

2.3 Markov processes

Definition 2.16. A stochastic process X is a Markov process if

P (X
t+s

2 A |F
s

) = P (X
t+s

2 A |X
s

) (2.1)

where

P (·|X
s

) := P (·|�(X
s

)) ,

P (E|�(X
s

)) := E [�
E

|�(X
s

)]

for some event E.

Remark 2.17. If I is discrete, then X is a Markov process if

P (X
n+1

2 A | X
0

= x
0

, . . . , X
n

= x
n

) = P (X
n+1

2 A | X
n

= x
n

)

Example 2.18. Consider a Markov Chain (X
t

)
t2N0 on a continuous state space

S ⇢ R and let S be a �-algebra on S. Let the evolution of (X
t

)
t2N0 be described

by the transition kernel p(·, ·) : S ⇥ S ! [0, 1] which gives the single-step tran-
sition probabilities:

p(x,A) := P (X
t+1

2 A | X
t

= x)

=

Z

A

q(x, y)dy.

In the above, A 2 B(S) and q = dP
d�

is the density of the transition kernel
with respect to Lebesgue measure. The transition kernel has the property that
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8x 2 S, p(x, ·) is a probability measure on S, while for every A 2 S, p(·, A) is
a measurable function on S.

For a concrete example, consider the Euler-Maruyama discretization of an
SDE for a fixed time step �t,

X
n+1

= X
n

+
p
�t⇠

n+1

, X
0

= 0,

where (⇠
i

)
i2N are independent, identically distributed (i.i.d) Gaussian N (0, 1)

random variables. The process (X
i

)
i2N is a Markov Chain on R. The transition

kernel p(x,A) has the Gaussian transition density

q(x, y) =
1p
2⇡�t

exp


�1

2

|y � x|2
�t

�
.

Thus, if X
n

= x, then the probability that X
n+1

2 A ⇢ R is given by

P (X
n+1

2 A|X
n

= x) =

Z

A

q(x, y)dy.

3 Day 3, 30.10.2012: Brownian motion

Suggested references: [1, 16, 19]

3.1 Scaled random walks

Recapitulation:

• A stochastic process X = (X
t

)
t2I

is a collection of random variables X
t

:
⌦ ! R indexed by t 2 I (e.g. I = [0,1)) on some probability space
(⌦, E ,P).

• A filtration F := (F
t

)
t2I

is a collection of increasing sigma-algebras satis-
fying F

t

⇢ F
s

for t < s. A stochastic processX is said to be adapted to F if
(X

s

)
st

is F
t

-measurable. For example, if we define F
t

:= �(X
s

: s  t),
then X is adapted to F .

• The probability distribution of a random variable X is given in terms of
its finite dimensional distributions.

Example 3.1 (Continued from last week). Let I = N
0

and consider a sequence
(X

n

)
n2N0 of random variables X

n

= X�t

n

governed by the relation

X�t

n+1

= X�t

n

+
p
�t⇠

n+1

, X�t

0

= 0a.s. (3.1)

where �t > 0, and (⇠
k

)
k2N0 are i.i.d. random variables with E [⇠

k

] = 0 and
E
⇥
⇠2
k

⇤
= 1 (not necessarily Gaussian). To obtain a continuous-time stochastic

process, the values of the stochastic process on non-integer time values may be
obtained by linear interpolation (cf. Figure 3.1 below). We want to consider the
limiting behaviour of the stochastic process in the limit as �t goes to zero. Set
�t = t/N for a fixed terminal time t < 1 and let N ! 1 (�t ! 0). Then, by
the central limit theorem,

X�t

N

=

r
t

N

NX

k=1

⇠
k

⇤
*

p
tZ (3.2)
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Figure 3.1: Sample paths of (X�t

n

)
n

for �t = 0.05, 0.002, 0.001 over the unit
time interval [0, 1], with piecewise constant interpolation. The lower right plot
shows the histogram (i.e., the unnormalized empirical distribution) of (X�t

1000

)
at time t = 1, averaged over 10 000 independent realizations.

where Z ⇠ N (0, 1), and “
⇤
*” means “convergence in distribution”, i.e., weak-⇤

convergence of probability measures in duality with bounded continuous func-
tions; equivalently, the limiting random variable is distributed according to N (0, t).
In other words the limiting distribution of the random variable X�t

N

for fixed
t = N�t is the same as the distribution of a centred Gaussian random variable
with variance t. As this is true for any t > 0, we can think of the limiting pro-
cess as a continuous-time Markov process B = (B

t

)
t>0

with Gaussian transition
probabilities,

P (B
t+s

2 A |B
s

= x) =

Z

A

q
s,t

(x, y)dy

=
1p

2⇡|t� s|

Z

A

exp

✓
� |y � x|2

2|t� s|
◆
dy.

The stochastic process B is homogeneous or time-homogeneous because the
transition probability density q

s,t

(·, ·) does not depend on the actual values of
t and s, but only on their di↵erence, i.e.,

q
s,t

(·, ·) = q̃|s�t|(·, ·) (3.3)

Remark 3.2. The choice of exponent 1/2 in
p
�t = (�t)1/2 in (3.2) is unique.

For (�t)↵ with ↵ 2 (0, 1

2

), the limit of X�t

n

“explodes” in the sense that the
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variance of the process blows up, i.e., E[(X�t

N

)2] ! 1 as N ! 1. On the other
hand, for (�t)↵ with ↵ > 1/2, X�t

N

! 0 in probability as N ! 1.

3.2 Constructing Brownian motion

Brownian motion is named after the British botanist, Robert Brown (1773-
1858), who first observed the random motion of pollen particles suspended in
water. Einstein called the Brownian process “Zitterbewegung” in his 1905 paper,
Über die von der molekularkinetischen Theorie der Wärme gefordete Bewegung
von in ruhenden Flüssigkeiten suspendierten Teilchen. The Brownian motion is
a continuous-time stochastic process which is nowhere di↵erentiable. It is also a
martingale in the sense that on average, the particle stays in the same location
at which it was first observed. In other words, the best estimate of where the
particle will be after a time t > 0 is its initial location.

Definition 3.3. (Brownian motion) The stochastic process B = (B
t

)
t>0

with
B

t

2 R is called the 1-dimensional Brownian motion or the 1-dimensional
Wiener process if it has the following properties:

(i) B
0

= 0 P-a.s.

(ii) B has independent increments, i.e., for all s < t, (B
t

� B
s

) is a random
variable which is independent of B

r

for 0  r  s.

(iii) B has stationary, Gaussian increments, i.e., for t > s we have1

B
t

�B
s

D

= B
t�s

(3.4a)

D

= N (0, t� s). (3.4b)

(iv) Trajectories of Brownian motion are continuous functions of time.

We now make precise some important notions:

Definition 3.4. (Filtered probability space) A filtered probability space is a prob-
ability space (⌦,F ,P) with a filtration (F

t

)
t�0

such that 8t � 0,

F
t

⇢ F .

Remark 3.5. One may write (⌦,F ,F
t

,P) to refer to a filtered probability space.
However, if one is working with a particular stochastic process X, one may
consider the sigma-algebra F on ⌦ to simply be the smallest sigma-algebra which
contains the union of the FX

t

, where FX

t

:= �(X
s

: s  t). In symbols, we
define the sigma-algebra in the probability space to be

F := _
t�0

F
t

:= � ([
t�0

F
t

) .

Definition 3.6 (Martingale). A stochastic process X = (X
t

)
t>0

is a martingale
with respect to a filtered probability space (⌦,F ,F

t

,P) if X satisfies the following
properties:

(i) X is adapted to F , i.e. X
t

is measurable with respect to F
t

for every t � 0

1The notation “X
D
= Y ” means “X has the same distribution as Y ”.
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(ii) X is integrable: X 2 L1(⌦,P), i.e.

E [|X|] =
Z

⌦

|X(!)|dP(!) < 1

(iii) X has the martingale property: 8t > s � 0

E [X
t

|F
s

] = X
s

.

Definition 3.7. (Gaussian process) A 1-dimensional process G = (G
t

)
t>0

is
called a Gaussian process if for any collection (t

1

, . . . , t
m

) ⇢ I for arbitrary
m 2 N

0

, the random variable (G
t1 , . . . , Gtm) has a Gaussian distribution, i.e. it

has a density

f(g) =
1p

det(2⇡⌃)
exp


�1

2
(g � µ)>⌃�1(g � µ)

�
(3.5)

where g = (g
1

, . . . , g
m

), µ 2 Rm is a constant vector of means and ⌃ = ⌃> 2
Rm⇥m is a symmetric positive semi-definite matrix.

Remark 3.8. The Brownian motion process is a Gaussian process with the
vector of means µ = 0 and covariance matrix

⌃ =

0

BBBB@

t
1

0 . . . 0

0 t
2

� t
1

. . .
...

...
. . .

. . . 0
0 . . . 0 t

m

� t
m�1

1

CCCCA
(3.6)

The covariance matrix is diagonal due to the independence of the increments of
Brownian motion.

Remark 3.9. Further remarks are in order.

(a) Conditions (i)-(iii) define a consistent family of finite-dimensional dis-
tributions. Hence, the existence of the process B is guaranteed by the
Kolmogorov Extension Theorem.

(b) Conditions (i)-(iii) imply that E [B
t

] = 0 and E [B
t

B
s

] = min(t, s) 8s, t 2
R. The proof is left as an exercise.

(c) The discrete process (X�t

n

)
n2N0 converges in distribution to a Brownian

motion (B
t

)
t�0

if the time discrete is linearly interpolated between two suc-
cessive points. In other words, if we consider the continuous-time stochas-
tic processes (X�t

t

)
t>0

(which is obtained by linear interpolation between
the X�t

N

) and B as random variables on the space of continuous trajec-
tories (C(R

+

) and B(C(R
+

))), then the process (X�t

t

)
t>0

converges in
distribution to B.

(d) We have that

E
⇥
(B

t

�B
s

)2
⇤
= E

⇥
(B

t�s

)2
⇤
by (3.4a) in Definition 3.3

= |t� s| by (3.4b) in Definition 3.3.

(e) Brownian motion enjoys the following scaling invariance, also known as
self-similarity of Brownian motion: for every t > 0 and ↵ > 0,

B
t

D

= ↵�1/2B
↵t

.
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3.3 Karhunen-Loève expansion

Observe that we have constructed Brownian motion by starting with the scaled
random walk process and using the Kolmogorov Extension Theorem. Now we
present an alternative method for constructing Brownian motion that is useful
for numerics, called the Karhunen-Loève expansion of Brownian motion. We will
consider this expansion for Brownian motion on the unit time interval [0, 1].

Let {⌘
k

}
k2N be a collection of independent, identically distributed (i.i.d)

Gaussian random variables distributed according to N (0, 1), and let {�
k

(t)}
k2N

be an orthonormal basis of

L2([0, 1]) =

⇢
u : [0, 1] ! R :

Z
1

0

|u(t)|2dt < 1
�
. (3.7)

By construction, the basis functions satisfy

h�
i

,�
j

i =
Z

1

0

�
i

(t)�
j

(t)dt = �
ij

,

and we can represent any function 8f 2 L2([0, 1]) by

f(t) =
X

k2N
↵
k

�
k

(t)

for ↵
k

= hf,�
k

i. We have the following result.

Theorem 3.10. (Karhunen-Loève): The process (W
t

)
0t1

defined by

W
t

=
X

k2N
⌘
k

Z
t

0

�
k

(s)ds (3.8)

is a Brownian motion.

Proof. We give only a sketch of the proof. For details, see the Appendix in [16],
or [9]). The key components of the proof are to show the following:

(i) The infinite sum which defines the Karhunen-Loève expansion is absolutely
convergent, uniformly on [0, 1].

(ii) It holds that E [W
t

] = 0 and E [W
t

W
s

] = min(s, t).

4 Day 4, 06.11.2012: Brownian motion, cont’d

Suggested references: [9, 22]

4.1 More properties of Brownian motion

From last week, we saw that the Brownian motion (B
t

)
t�0

is a continuous-time
stochastic process on R with

• stationary, independent, Gaussian increments
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• a.s. continuous paths. That is, for fixed !, each (B
t

)
t�0

(!) is a continuous
trajectory in R.

Moreover the scaled random walk defined by

X�t

n+1

= X�t

n

+
p
�t⇠

n+1

with linear interpolation converges weakly (i.e. converges in distribution) to
the Brownian motion process. Above, the (⇠

n

)
n2N are independent, identically

distributed (i.i.d) normalized Gaussian random variables (i.e. ⇠
n

is Gaussian
with mean zero and variance 1).

Remark 4.1. Two remarks are in order.

(i) Continuity can be understood using the Lévy construction of Brownian
motion on the set of dyadic rationals,

D :=
[

n2N
D

n

, D
n

:=

⇢
k

2n
: k = 0. . . . , 2n

�
.

The construction of Brownian motion on the unit time interval is as fol-
lows. Let {Z

t

}
t2D

be a collection of independent, normalized random vari-
ables defined on a probability space. Define the collection of functions
(F

n

)
n2N, where F

n

: [0, 1] ! R are given by

F
n

(t) :=

8
><

>:

0 t 2 D
n�1

2�(j+1)/2Z
t

t 2 D
j

\D
j�1

lin. interp. in between.

Then the process

B(t) =
1X

n=1

F
n

(t).

is indeed a Brownian motion on [0, 1]. The Gaussianity of the {Z
t

}
t2D

leads to the stationary, independent Gaussian increments of the process
(B

t

)
t2[0,1]

. The continuity of the process follows from an application of
the Borel-Cantelli Lemma, which states that there exists a random and
almost surely finite number N 2 N such that for all n � N and d 2 D

n

,
|Z

d

| < c
p
n holds. This boundedness condition implies that 8n � N we

have a decay condition for the F
n

:

kF
n

k1 < c
p
n2�n/2.

Therefore the sum
P

j

F
j

(·) converges uniformly on [0, 1]. As each F
j

is
continuous and the uniform limit of continuous functions is continuous,
the process (B

t

)
t2[0,1]

is continuous. For more details, see [18].

(ii) The Hausdor↵ dimension dimH of Brownian motion paths depends on the
dimension of the space Rd in which the Brownian motion paths live.2 Let
B

[0,1]

= {B
t

2 Rd : t 2 [0, 1]} be the graph of B
t

over I = [0, 1]. Then

dimHB
[0,1]

=

(
3/2 d = 1

2 d � 2 .

2If you do not know what this is, just think of the box counting dimension that is an upper
limit of the Hausdor↵ dimension.
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Figure 4.1: Sample paths of the Karhunen-Loève expansion of (W
t

for M =
2, 64, 2048 basis functions (you can guess which one is which). The lower right
plot shows the unnormalized histogram of W

t

at time t = 1, using M = 64 basis
functions and averaged over 10 000 independent realizations.

The significance of this is as follows: if you consider Brownian motion
paths confined to a smooth and compact two-dimensional domain and im-
pose reflecting boundary conditions, then the Brownian motion paths will
fill the domain in the limit as t ! 1.

4.2 Brownian bridge

Recall the Karhunen-Loève expansion of Brownian motion:

Theorem 4.2. Let {⌘
k

}
k2N be i.i.d. normalized random variables and {�

k

}
k2N

form a real orthonormal basis of L2([0, 1]). Then

W
t

=
X

k2N
⌘
k

Z
t

0

�
k

(s)ds

is a Brownian motion on the interval I = [0, 1].

Exercise 4.3. Show that, for the definition of (W
t

)
t2[0,1]

above, it holds that
E [W

t

W
s

] = min(s, t).

Remark 4.4. Unlike the scaled random walk construction of Brownian motion,
no forward iterations are required here. This helps for the consideration of
round-o↵ errors in the construction of (W

t

)
t2[0,1]

. Furthermore:
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(i) Standard choices for the orthonormal basis {�
k

}
k2N are Haar wavelets or

trigonometric functions. Hence the numerical error can be controlled by
truncating the series and by the choice of the basis.

(ii) To obtain a Brownian motion on any general time interval [0, T ], it su�ces
to use the scaling property, e.g.

W
[0,T ]

D

=
p
TW

[0,1]/T

=
p
T
X

k2N
⌘
k

Z
t/T

0

�
k

(s)ds.

Application: filtering of Brownian motion

Suppose we know that W
0

= 0 and W
1

is equal to some constant !. Without
loss of generality, let ! = 0. Suppose we wanted to generate a Brownian motion
path which interpolated between the values W

0

= 0 and W
1

= 0.

Definition 4.5. A continuous, mean-zero Gaussian process (BB
t

)
t�0

is called
a Brownian bridge to ! if it has the same distribution as (W

t

)
t2[0,1]

conditional
on the terminal value W

1

= !. Equivalently, (BB
t

)
t�0

is a Brownian bridge if

Cov [BB
t

BB
s

] = min(s, t)� st.

Lemma 4.6. If (W
t

)
t2[0,1]

is a Brownian motion, then BB
t

= W
t

� tW
1

is a
Brownian bridge.

Proof. Observe that

E [BB
t

] = E [W
t

� tW
1

] = 0� t · 0 = 0,

so that (BB
t

)
t2[0,1]

is indeed mean-zero. The process (BB
t

)
t2[0,1]

inherits con-
tinuity from the process (W

t

)
t2[0,1]

. The covariance process is given by

Cov(BB
t

BB
s

) = E [BB
t

BB
s

] = E [(W
t

� tW
1

) (W
s

� sW
1

)]

= E [W
t

W
s

]� tE [W
1

W
s

]| {z }
=min(s,1)

�sE [W
1

W
t

]| {z }
=min(t,1)

+tsE [W
1

W
1

]

= min(t, s)� ts� st+ ts .

4.3 Simulating a Brownian bridge

First approach: forward iteration, using Euler’s method. The time interval is
[0, 1] and we have a time step of �t := 1/N , so we have (N +1) discretized time
nodes (t

n

= n�t)
n=0,...,N

and (N+1) values (Y �t

n

)
n=0,...,N

. Let {⇠
n

}
n=0,...,N�1

be a collection of i.i.d. normalized random variables. Forward iteration gives

Y �t

n+1

= Y �t

n

✓
1� �t

1� t
n

◆
+

p
�t⇠

n+1

.

It holds that 1 � t
N�1

= �t by definition of �t = 1/N . Therefore from the
formula above we have

Y �t

N

=
p
�t⇠

N+1

.
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Therefore Y �t

N

is a mean zero Gaussian random variable with variance�t. While
this implies that Y �t

N

should converge in probability to the value 0 as the step
size �t ! 0, the forward iteration approach is not optimal because the random
variable ⇠

N+1

is continuous, so

P
�
Y �t

N

= 0
�
= 0.

Therefore this construction of the Brownian bridge to the value ! = 0 will in
general not yield processes which are at 0 at time t = 1. As a matter of fact,
Y �t

N

is unbounded and can be arbitrarily far away from zero.
Second approach: Recall the Karhunen-Loéve construction of Brownian

motion and choose trigonometric functions as an orthonormal basis. Then the
process (W

t

)
t2[0,1]

given by

W
t

(!) =
p
2

MX

k=1

⌘
k

(!)
sin((k � 1

2

)⇡t

(k � 1

2

)⇡

is a Brownian motion and we can define the Brownian bridge to ! at t = 1 by

BB
t

= W
t

� t(W
1

� !).

Remark 4.7. It holds that

BB
t

=
p
2
X

k2N
⌘
k

sin(k⇡t)

k⇡

=
X

k2N
⌘
k

p
�
k

 
k

(t),

where {�
k

, 
k

}
k2N =

�p
2/k⇡, sin(k⇡t)

 
k2N is the eigensystem of the covariance

operator T : L1([0, 1]) ! L1([0, 1]) of the process (BB
t

)
t2[0,1]

, defined by

(Tu)(t) =

Z
1

0

Cov(BB
t

BB
s

)| {z }
=min(t,s)�st

u(s)ds ,

i.e.,
T 

k

(·) = �
k

 
k

(·).
The second approach works for any stochastic process which has finite variance
over a finite time interval. For details, see [22].

5 Day 5, 13.11.2012: Stochastic integration

Suggested references: [1, 16, 19]

5.1 Integrating against Brownian motion

Recall that Brownian motion (B
t

)
t>0

is a stochastic process with the following
properties:

• B
0

= 0 P-a.s.
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Figure 4.2: Sample paths of the Brownian bridge approximation, using the
Euler scheme with �t = 0.05 (left panel) and Karhunen-Loève expansion with
M = 20 basis functions (right panel).

• 80  t
0

< t
1

< t
2

< . . . < t
n

, the increments B
ti �B

ti�1 are independent
for i = 1, . . . , n and Gaussian with mean 0 and variance t

i

� t
i�1

.

• t 7! B
t

(!) is continuous P-a.s. but is P-a.s. nowhere di↵erentiable.

One of the motivations for the development of the stochastic integral lies in
financial mathematics, where one wishes to determine the price of an asset
that evolves randomly. The French mathematician Louis Bachelier is generally
considered one of the first people to model random asset prices. In his PhD
thesis, Bachelier considered the following problem. Let the value S

t

of an asset
at time t > 0 be modelled by

S
t

= �B
t

where � > 0 is a scalar that describes the volatility of the stock price. Let f(t)
be the amount of money an individual invests in the asset in some infinitesimal
time interval [t, t+ dt]. Then the wealth of the individual at the end of a time
interval [0, T ] is given by

Z
T

0

f(t)dS
t

= �

Z
T

0

f(t)dB
t

.

However, it is not clear what the expression ‘dB
t

’ means. In this section, we will
consider what an integral with respect to dB

t

means, and we will also consider
the case when the function f depends not only on time but on the random
element !.

5.2 The Itô integral for simple functions

The first idea is to rewrite
Z

f(t)dB
t

=

Z
f(t)

dB
t

dt
dt

but as Brownian motion is almost surely nowhere di↵erentiable, we cannot write
dBt
dt

.
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The second idea is to proceed as in the definition of the Lebesgue integral:
start with simple step functions and later extend the definition to more general
functions by the Itô Isometry.

Step 1: Consider simple functions

f(t) =
nX

i=1

a
i

�
(ti,ti+1]

(t)

where �
A

is the indicator function of a set A satisfying

�
A

(x) =

(
1 x 2 A

0 x /2 A.

Observe that f takes a finite number n of values. By the theory of
Lebesgue integration, we know that the set of these simple functions is
dense in L2([0,1)). We also know that the usual Riemann integral of
such a function f corresponds to the area under the graph of f , with

Z 1

0

f(t)dt =
X

i

a
i

(t
i+1

� t
i

)

Step 2: We now extend the method above to stochastic integral with respect to
Brownian motion:

Z
f(t)dB

t

=
X

a
i

(B
ti+1 �B

ti).

Remark 5.1. By the equation above, it follows that the integral
R
f(t)dB

t

is a random variable, since the B
ti are random variables. Since increments

of Brownian motion are independent and Gaussian, the integral
R
f(t)dB

t

is normally distributed with zero mean. What about its variance?

Lemma 5.2. (Itô Isometry for simple functions) For a simple function
f(t) =

P
i

a
i

�
(ti,ti+1]

(t), it holds that

E
"✓Z 1

0

f(t)dB
t

◆
2

#
=

Z 1

0

(f(t))2 dt.
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Proof.

var

✓Z 1

0

f(t)dB
t

◆
= var

 
X

i

a
i

�
B

ti+1 �B
ti

�
!

=
nX

i=1

a2
i

var
�
B

ti+1 �B
ti

�

=
nX

i=1

a2
i

(t
i+1

� t
i

)

=
nX

i=1

a2
i

Z 1

0

�
(ti,ti+1]

dt

=

Z
nX

i=1

a2
i

�
(ti,ti+1]

dt

=

Z
(f(t))2 dt.

Therefore

var

✓Z
f(t)dB

t

◆
= E

"✓Z
f(t)dB

t

◆
2

#
�

0

BB@E
Z

f(t)dB
t

�

| {z }
=0

1

CCA

2

= E
"✓Z

f(t)dB
t

◆
2

#
.

Step 3: Now we extend the definition of the integral to L2([0,1)). The main
result is the following

Theorem 5.3. (Itô integral for L2([0,1)) functions) The definition of
the Itô integral can be extended to elements f 2 L2([0,1)) by setting

Z 1

0

f(t)dB
t

:= lim
n!1

Z 1

0

f
n

(t)dB
t

where the sequence (f
n

)
n2N is a sequence of a simple functions satisfying

f
n

! f in L2([0,1)), i.e.

kf
n

� fk
L

2
([0,1))

=

✓Z 1

0

(f
n

� f)2 (t)dt

◆
1/2

�!
n!1 0.

By the Itô isometry, we can show that (
R
f
n

(t)dB
t

)
n2N is a Cauchy se-

quence in the weighted L2 space

L2(⌦,P) :=
�
F : ⌦ ! R : kF ||

L

2
(⌦,P) < 1 
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of measurable functions F where

kFk2
L

2
(⌦,P) =

Z
|F |2(!) dP(!).

To show that the sequence (
R
f
n

(t)dB
t

)
n2N is a Cauchy sequence, let

(f
l

)
l2N be a sequence of functions converging to f in L2([0,1)) and con-

sider for m,n 2 N
����
Z

f
n

(t)dB
t

�
Z

f
m

(t)dB
t

����
L

2
(⌦,P)

=

 
E
"✓Z

f
n

(t)dB
t

�
Z

f
m

(t)dB
t

◆
2

#!
1/2

=

 
E
"✓Z

f
n

(t)� f
m

(t)dB
t

◆
2

#!
1/2

=

✓Z
(f

n

(t)� f
m

(t))2 dt

◆
1/2

(Itô isometry)

= kf
n

� f
m

k
L

2
([0,1))

 kf
n

� fk
L

2
([0,1))

+ kf
m

� fk
L

2
([0,1))

and using that kf
n

� fk
L

2
([0,1))

and kf
m

� fk
L

2
([0,1))

! 0 as m,n ! 1,
the result follows.

Since L2(⌦,P) is complete, the limit exists and is in the same space.
Moreover, by the Itô isometry, the limit is independent of the sequence
(f

n

)
n2N used to approximate f in L2([0,1)) (see [6] for an example).

Example 5.4. Consider the random variable
R1
0

exp(�t)dB
t

. How is it
distributed? Using the Itô Isometry, the random variable is Gaussian with
mean zero and variance 1

2

=
R1
0

exp(�2t)dt.

Corollary 5.5. The Itô Isometry holds as well for f 2 L2([0,1)), not
just simple functions.

Step 4: Now we consider functions f which depend both on the random element
! as well as time t. That is, we consider stochastic integrals of stochastic
processes f : [0,1)⇥ ⌦ ! R with the following properties:

(i) f is B⇥F-measurable, where B is the Borel sigma-algebra on [0,1)
and F is a given sigma-algebra on ⌦.

(ii) f(t,!) is adapted with respect to F
t

, where F
t

:= � (B
s

: s  t)

(iii) E
⇥R |f(t,!)|2dt⇤ < 1.

Consider simple stochastic processes of the form

f(t,!) =
nX

i=1

a
i

(!)�
(ti,ti+1]

(t).

Then Z
f(t,!)dB

t

=
nX

i=1

a
i

(!)
�
B

ti+1 �B
ti

�
.
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5.3 Ambiguities in defining stochastic integrals

Example 5.6. Fix n 2 N, fix a time step �t := 2�n and define the time
nodes t

i

:= i�t for i = 0, 1, 2, . . .. Let (B
t

)
t>0

be the standard Brownian
motion. Define the following processes on [0,1):

f
1

(t,!) =
X

i2N
B

ti(!)�[ti,ti+1)
(t)

f
2

(t,!) =
X

i2N
B

ti+1(!)�[ti,ti+1)
(t).

Now fix T > 0 and N such that T = t
N

= N�t = N2�n and compute the
expected values of the integrals of f

1

and f
2

over [0, T ]. By the independent
increments property of Brownian motion (or the martingale property of
Brownian motion), we have

E
"Z

T

0

f
1

(t,!)dB
t

#
=

N�1X

i=0

E
⇥
B

ti

�
B

ti+1 �B
ti

�⇤
= 0.

Using the fact above with linearity of expectation, we also have

E
"Z

T

0

f
2

(t,!)dB
t

#
=

N�1X

i=0

E
⇥
B

ti+1

�
B

ti+1 �B
ti

�⇤� 0

=
N�1X

i=0

�
E
⇥
B

ti+1

�
B

ti+1 �B
ti

�⇤� E
⇥
B

ti

�
B

ti+1 �B
ti

�⇤�

=
N�1X

i=0

E
h�
B

ti+1 �B
ti

�
2

i

=
N�1X

i=0

t
i+1

� t
i

= T.

In the case of Riemann integration of deterministic integrals, letting n !
1 would lead to the result that both integrals above are equal. We see
that for stochastic integration, this is not the case; even if we let n ! 1,
the expectations of the Itô integrals would not be equal. This is because
the choice of endpoint of the interval matters in stochastic integration.
Choosing the left endpoint (i.e. choosing B

ti) for f1 and the right endpoint
(i.e. B

ti+1 for f
2

leads to di↵erent expectations. Note also that taking
the right endpoint in f

2

leads to f
2

not being adapted, since B
ti+1 is not

measurable with respect to F
t

for t < t
i+1

. Therefore, by property (ii)
above, we may not integrate f

2

with respect to dB
t

in the way we have just
described.

6 Day 6, 20.11.2012: Stochastic integration, cont’d

6.1 Itô isometry

We extend the Itô integral to the case

I[f ](!) =

Z
t

0

f(s,!)dB
s

(!) ,
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where B
t

is one-dimensional Brownian motion. One aim is to understand

dX
t

= b(t,X
t

)dt+ �(t,X
t

)dB
t

, X
0

= x

that is SDE shorthand for

X
t

= x+

Z
t

0

b(s,X
s

) ds+

Z
t

0

�(s,X
s

) dB
s

.

A second objective later on will be to analyze discretizations of SDEs, such as

X
n+1

�X
n

= b(t
n

, X
n

)�t+ �(t
n

, X
n

)�B
n

.

We begin with a couple of definitions.

Definition 6.1. We call k · kV the norm defined by

kfk2V = E
Z

t

s

|f(u, ·)|2du
�
=

Z

⌦

Z
t

s

|f(u,!)|2du dP(!) .

Definition 6.2 (Cf. the considerations at the bottom of p. 22). Let V = V(s, t)
be the class of functions f : [0,1)⇥ ⌦ ! R with

(i) (t,!) 7! f(t,!) is B ⇥ F-measurable3

(ii) f(t, ·) is F
t

-adapted

(iii) kfkV < 1.

Definition 6.3. A simple function ' : [0,1)⇥⌦ ! R is a function of the form

'(t,!) =
X

j

e
j

(!)�
[tj ,tj+1)

(t)

where each e
j

is F
tj -measurable and {F

t

}
t�0

with F
t

= �(B
s

: s  t) is the
filtration generated by Brownian motion.

Definition 6.4. The Itô integral for a simple function ' is defined by

I['](!) =

Z
t

0

'(s,!)dB
s

(!) =
X

j

e
j

(!)(B
tj+1 �B

tj ).

Lemma 6.5. Itô Isometry: If '(t,!) is a bounded, simple function, then

E
"✓Z

t

s

'(u,!)dB
u

(!)

◆
2

#
= E

Z
t

s

|'(u,!)|2du
�
.

Proof. Define �B
j

:= B
tj+1 � B

tj . Then I['] =
P

j

e
j

�B
j

. By independence
of e

i

e
j

�B
i

from �B
j

when i 6= j, we have that

E [e
i

e
j

�B
i

�B
j

] =

(
0 i 6= j

E
⇥
e2
j

⇤
(t

j+1

� t
j

) i = j.

3Here again: B = B([0,1)) is the �-algebra od Borel sets over [0,1).
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Therefore,

E
"✓Z

t

s

'(u, ·)dB
u

◆
2

#
=
X

i,j

E [e
i

e
j

�B
i

�B
j

]

=
X

j

E
⇥
e2
j

⇤
(t

j+1

� t
j

) = E
Z

t

s

'(u, ·)du
�
.

6.2 Itô Integral for random integrands

Now we will extend the Itô integral to V = V(s, t), by extending the Itô integral
to progressively larger classes of functions.

Step 1: Let g 2 V be a uniformly bounded function which is continuous for each
!. Then there exists a sequence of simple functions ('

n

)
n2N such that

k'
n

� gkV ! 0

as n ! 1.

Proof. Choose '
n

(t,!) =
P

j

g(t
j

,!)�
[tj ,tj+1)

(t). Then '
n

! g in L2([s, t])

for each ! 2 ⌦, and hence k'
n

� gk2V ! 0, i.e.,

E
Z

t

s

('
n

� g)2 du

�
=

Z

⌦

✓Z
t

s

('
n

� g)2 du

◆
dP ! 0

as n ! 1.

Step 2: Let h 2 V be bounded. Then there exists a bounded sequence of functions
(g

n

)
n2N ⇢ V such that each g

n

is continuous in t for each ! and for each
n 2 N, such that kg

n

� hkV ! 0.

Proof. Suppose that |h(t,!)|  M < 1. For each n, let  
n

be defined by

(i)  
n

(x) = 0 for x 2 (�1,� 1

n

] [ [0,1)

(ii)
R
R  n

(x)dx = 1.

Now define the functions g
n

: [0,1)⇥ ⌦ ! R by

g
n

(t,!) =

Z
t

0

 
n

(s� t)h(s,!)ds.

Then it holds that g
n

! h in L2([s, t]), i.e., kg
n

�hk
L

2
([s,t])

! 0 as n ! 1.
As h is bounded, we can apply the bounded convergence theorem to obtain

E
Z

t

s

(g
n

� h)2 du

�
! 0

as n ! 1.
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Remark 6.6. In the limit as n ! 1, the  
n

(x) become more sharply
peaked at x = 0—in other words, they approach a Dirac delta distribution:

h(t,!) =

Z 1

0

�(s� t)h(s,!)ds .

Step 3: Let f 2 V. Then there exists a sequence of functions (h
n

)
n2N ⇢ V such

that h
n

is bounded for each n 2 N and kh
n

� fkV ! 0 as n ! 1.

Proof. Define

h
n

(t,!) =

8
><

>:

�n f(t,!) < �n

f(t,!) �n  f(t,!)  n

n f(t,!) > n.

Then the assertion follows by the dominated convergence theorem.

By Steps 1-3, f 2 V can be approximated by sequences of simply functions
'
n

in the sense that
kf � '

n

kV ! 0 .

Therefore we can define

I[f ](!) =

Z
t

s

f(u,!)dB
u

(!) = lim
n!1

Z
t

s

'
n

(u,!)dB
u

(!) ,

where by the Itô isometry, the limit exists in L2(⌦,P) because
✓Z

'
n

(u,!)dB
u

(!)

◆

n2N

is a Cauchy sequence in L2(⌦,P); see p. 22.

Definition 6.7. Let f 2 V = V(s, t). Then the Itô integral of f is defined by

lim
n!1

Z
t

s

'
n

(u,!)dB
u

(!)

where ('
n

)
n2N is a sequence of simple functions with '

n

! f in V, i.e.,

E
Z

t

s

(f(u,!)� '(u,!))2 du

�
! 0 as n ! 1.

Corollary 6.8. (Itô isometry) For all f 2 V = V(s, t), we have

E
"✓Z

t

s

f(u,!)dB
u

(!)

◆
2

#
= E

Z
t

s

|f(u,!)|2 du
�
.

Theorem 6.9. Let f, g 2 V(0, t) and 0  s  u  t. Then (a.s.):

(i) Z
t

s

f(⌧,!)dB
⌧

=

Z
u

s

f(⌧,!)dB
⌧

+

Z
t

u

f(⌧,!)dB
⌧

.
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(ii) Z
t

s

(↵f + �gdB
u

= ↵

Z
t

s

fdB
u

+ �

Z
t

s

gdB
u

8↵,� 2 R

(iii)

E
Z

t

0

f(s,!)dB
s

�
= 0

(iv) Z
t

s

f(u,!)dB
u

is F
t

-measurable.

Proof. Exercise.

6.3 Ornstein-Uhlenbeck process

Example 6.10 (OU process). Consider the linear SDE for constants A,B 2 R

dX
t

= AX
t

dt+BdW
t

, X
0

= x,

which means

X
t

= x+A

Z
t

0

X
s

ds+B

Z
t

0

dW
s

.

One can show that the solution to the linear SDE can be expressed using the
variation-of-constants-formula

X
t

= eAtx+

Z
t

0

eA(t�s)BdW
s

.

The solution (X
t

)
t>0

is a Gaussian process, so it is completely specified by its
mean and variance

E [X
t

] = eAtx by property (iv) above

E
h
(X

t

� E [X
t

])2
i
= E

"✓Z
t

0

eA(t�s)BdWs

◆
2

#

= E
Z

t

0

⇣
eA(t�s)B

⌘
2

ds

�
by Itô isometry

=

Z
t

0

e2A(t�s)B2 ds

=
B2

2A

�
e2At � 1

�

Remark 6.11. The main things to remember are that the approximation pro-
cedure for defining the Itô integral reduces to the Itô isometry for elementary
functions '

n

! f (convergence in V) and that the limiting integral I[f ] is in
L2(⌦,P). Specifically, we have proved that I['

n

] ! I[f ] in L2(⌦,P), i.e.,

E
⇥
(I['

n

]� I[f ])2
⇤
=

Z

⌦

(I['
n

](!)� I[f ](!))2 dP(!) ! 0

as n ! 1.
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7 Day 7, 27.11.2012: Itô calculus

Recapitulation: The Itô integral for functions f 2 V ⇠= L2(⌦ ⇥ [0, T ],P ⌦ �)
is defined by

I[f ](!) =

Z
T

0

f(!, s)dB
s

(!) = lim
n!1

X

j

en
j

⇣
B

t

n
j+1

�B
t

n
j

⌘
,

with convergence in L2(⌦,P). Here the (en
j

)
n,j2N is a sequence of random vari-

ables that are measurable with respect to �(B
s

: s  tn
j

), and

('
n

)
n2N , '

n

(!, t) =
X

j

en
j

(!)�
[t

n
j ,t

n
j+1)

(t)

is a sequence of simple functions such that k'
n

� fkV ! 0.
The Itô integral provides the solution to the stochastic di↵erential equation

dX
t

(!) = b(X
t

(!), t)dt+ �(X
t

(!), t)dB
t

(!) , X
0

= x . (7.1)

Specifically, assuming that (X
t

)
t�0

is adapted to the filtration generated by B
t

,
i.e., X

t

is measurable with respect to �(B
s

: s  t), we have

X
t

= x+

Z
t

0

b(X
s

, s) ds+

Z
t

0

�(X
s

, s) dB
s

.

7.1 Functions of bounded and quadratic variation

What we now need is a theory of di↵erentiation that is useful in solving equations
such as (7.1) and which can explain properties of the Itô integral, such as

Z
t

0

B
t

dB
t

=
1

2
B2

t

� 1

2
t.

Exercise 7.1. Prove the above equation.

Definition 7.2. Let T > 0. A sequence (�
n

)
n2N of partitions of [0, T ], with

�
n

= {tn
0

, . . . , tn
k

n} ⇢ [0, T ] , 0 = tn
0

< tn
1

< · · · < tn
k

n = T

is called a refinement of partitions of [0, T ] if the sequence satisfies

�
n+1

� �
n

& |�
n

| := max
i

|tn
i

� tn
i�1

| ! 0 as n ! 0.

Example 7.3. An example of a refinement of partitions is the sequence of
dyadic partitions. Let T = 1, and define

�
n

=

⇢
j

2n
: j = 0, 1, . . . , 2n � 1, 2n

�
.

Definition 7.4. A function f : [0, T ] ! R is of bounded variation (BV) if

sup
n2N

|f(tn
i

)� f(tn
i�1

)| < 1

for all refinements of partitions (�
n

)
n2N.
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Definition 7.5. A function f : [0, T ] ! R is of quadratic variation (QV) if its
quadratic variation

hfi
t

:= sup
n

X

t

n
i t

|f(tn
i

)� f(tn
i�1

)|2 < 1.

is finite for every t 2 [0, T ] and over all refinements of partitions.

Remark 7.6. We make some remarks which we will not prove, with the excep-
tion of (iii).

(i) Continuously di↵erentiable functions are BV functions.

(ii) If one integrates against a BV function, the resulting Riemann-Stieltjes
integral is independent of the refinement of partitions.

(iii) Continuous BV functions have zero QV:

0  hfi
t

= sup
n2N

X

t

n
i t

|f(tn
i

)� f(tn
i�1

)|2

= lim
n!1

X

t

n
i t

|f(tn
i

)� f(tn
i�1

)|2

 max
i

|f(tn
i

)� f(tn
i�1

)| lim
n!1

X

t

n
i t

|f(tn
i

)� f(tn
i�1

)|

 C lim
n!1 |f(tn

i

)� f(tn
i�1

)| (since f is a BV function)

= 0 (by continuity of f) .

(iv) The quadratic variation of Brownian motion at time t is equal to t:

hBi
t

= t.

Brownian motion is not of bounded variation.

(v) Given an interval [0, T ] for T > 0 and a function f : [0, T ] ! R of QV,
the quadratic variation hfi

t

is a BV function of time, which follows from
the fact that h·i is monotonic as a function of time.

7.2 Itô’s formula

Theorem 7.7 (Itô’s formula I). Let F 2 C2,1(R, [0, T ]) and let X = B 2
C([0, T ]) be Brownian motion. Then

F (X
t

, t) = F (0, 0) +

Z
t

0

@F

@x
(X

s

, s) dX
s

+

Z
t

0

✓
1

2

@2

@x2

+
@

@s

◆
F (X

s

, s) ds .

Proof. For convenience, we will drop the time-dependence of F , so that F (x, s) =
F (x). By Taylor’s theorem,

F (X
t

n
i
)� F (X

t

n
i�1

) = F 0(X
t

n
i�1

)(X
t

n
i
�X

t

n
i�1

) +
1

2
F 00(⇠n

i

)(X
t

n
i
�X

t

n
i�1

)2
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for a number ⇠n
i

2 (X
t

n
i
, X

t

n
i�1

). Then

F (X
t

)� F (X
0

) =
X

t

n
i t

F 0(X
t

n
i�1

)(X
t

n
i
�X

t

n
i�1

)

| {z }
In

+
1

2

X

t

n
i t

F 00(⇠n
i

)(X
t

n
i
�X

t

n
i�1

)2

| {z }
Qn

.

We consider the two sums separately. As for the first sum, we observe that I
n

is a discrete version of the Itô integral, and therefore

����In �
Z

t

0

@F

@x
(X

s

, s) dX
s

����
2

L

2
(⌦,P)

! 0

as n ! 1. Using (v) from the preceding remark, we know that the quadratic
variation of (X

t

)
t2[0,T ]

is itself a BV function of time. Therefore Q
n

converges
to the standard Riemann-Stieltjes integral,

1

2

Z
t

0

F 00(X
s

) dhXi
s

=
1

2

Z
t

0

F 00(X
s

) ds ,

where, again, convergence is in L2(⌦,P).

Corollary 7.8 (Itô’s Formula II). Let B = (B
t

)
t�0

be d-dimensional Brownian
motion and let X = (X

t

)
t�0

be the n-dimensional solution to the Itô stochastic
di↵erential equation

dX
t

= b(X
t

, t)dt+ �(X
t

, t)dB
t

,

where b : Rn ⇥ R ! Rn, � : Rn ⇥ R ! Rn⇥d. Let F 2 C2,1(Rn, [0,1)). Then
Y
t

:= F (X
t

, t) solves the Itô equation

dY
t

= r
x

F (X
t

, t) · dX
t

+
@F

@t
(X

t

, t)dt
| {z }

BV part (by chain rule)

+
1

2
dX

t

·r2

x

F (X
t

, t)dX
t

| {z }
QV part

=

 
@F

@t
+

nX

i=1

@F

@x
i

b
i

+
1

2

�
��> : r2

x

F
�
!
(X

t

, t) dt+
�
�>r

x

F
�
(X

t

, t) · dB
t

where A : B = (ATB) denotes the matrix inner product, and we have obtained
the last equation by substituting dX

t

= b(X
t

, t)dt+ �(X
t

, t)dB
t

, using the rules

dtdt = dtdBi

t

= dBj

t

dt = 0 and dBi

t

dBj

t

= �
ij

dt (i, j = 1, . . . , d) ,

where Bi

t

denotes the i-th component of B
t

.

Remark 7.9. The matrix family a(·, ·) := ��> : Rn ⇥R ! Rn⇥n is sometimes
called the di↵usion matrix.

Remark 7.10. Note that, for functions that have a quadratic variation, Itô’s
formula is what is chain rule for functions of bounded variation. Dropping the
dependence on (X

t

, t) for the moment, one may rewrite the last equation as

dY
t

=

0

@@F
@t

+
nX

i=1

@F

@x
i

b
i

+
1

2

nX

i,j=1

a
ij

@2F

@x
i

@x
j

1

A dt+
dX

i=1

0

@
nX

j=1

�
ij

@F

@x
j

1

A dBi

t

.
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Historical remarks

Itô’s original work was published in 1951.4 However it was recently revealed that
in 1940 Wolfgang Döblin, brother of novelist Alfred Döblin, French-German
mathematician and student of Maurice Fréchet and Paul Lévy, sent a sealed
letter to the Académie Française, while he was on the German front with the
French army (as a telephone operator). Döblin committed suicide before he
was captured by the German troops and burned all his mathematical notes.
According to Döblin’s last will, the letter to the Académie Française was opened
in the year 2000 and found to contain a proof of Itô’s lemma.5

7.3 Geometric Brownian motion

Consider the Geometric Brownian motion S = (S
t

)
t�0

that is the solution of
the Itô stochastic di↵erential equation (SDE)

dS
t

= µS
t

dt+ �S
t

dB
t

, S
0

> 0.

We claim that the solution to the SDE is

S
t

= S
0

exp

✓
µ� �2

2

◆
t+ �B

t

�
.

This can be seen as follows: using Itô’s formula for F (x) = log x, we find

Y
t

= logS
t

) dY
t

=
dS

t

S
t

� �2

2

S2

t

S2

t

dt

=

✓
µ� �2

2

◆
dt+ �dB

t

and therefore

Y
t

= Y
0

+

Z
t

0

✓
µ� �2

2

◆
dt+ �

Z
t

0

dB
t

= Y
0

+

✓
µ� �2

2

◆
t+ �B

t

which proves that S
t

follows the log-normal distribution with mean
⇣
µ� �

2

2

⌘
t

and variance �2. Moreover,

E [S
t

] = exp (µt) .

Remark 7.11. The geometric Brownian motion is sometimes used to model
the growth of one’s wealth subject to some positive interest rate µ > 0 and ran-
dom fluctuations due to market conditions, represented by the volatility-modified
Brownian motion term �B

t

. Good to know that E[S
t

] = exp (µt).

4Kiyoshi Itô, 1915–2008, Japanese Mathematician; the famous lemma appeared in [K. Itô,
On stochastic di↵erential equations, Memoirs AMS 4, 1–51, 1951].

5For a summary of Döblin’s work, see [B. Bru and M. Yor, Comments on the life and
mathematical legacy of Wolfgang Doeblin, Finance Stochast. 6, 4–47, 2002]
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Figure 7.1: Typical realization of Geometric Brownian Motion (S
t

)
t2[0,1]

for
µ = 2 and � = 1. The red dashed line shows the mean E[S

t

].

It is also known, however, that the Brownian motion satisfies the Law of the
Iterated Logarithm (see, e.g., [19, Thm. 5.1.2])

lim sup
t!1

B
tp

2t log log t
= +1

lim inf
t!1

B
tp

2t log log t
= �1 ,

which states that Brownian grows sublinearly. Since

S
t

= S
0

exp

✓
µ� �2

2

◆
t+ �B

t

�

it follows that depending on di↵erent values of µ and �, the wealth process
(S

t

)
t�0

is dominated by the linear drift term. Indeed S, can exhibit rather
di↵erent behaviours in the limit as t ! 1, depending on the values of µ and �:

(a) If µ < �

2

2

, then S
t

! 0 as t ! 1.

(b) If µ = �

2

2

, then lim sup
t!1 S

t

= 1, lim inf
t!1 S

t

= 0.

(c) If µ > �

2

2

, then S
t

% 1 as t ! 1.

(All the statements above hold P-almost surely.) The mind-blowing aspect of
geometric Brownian motion is the seemingly contradictory property that, even
though the expected value grows exponentially with time for every volatility value
�, the process will hit zero with probability 1 whenever the volatility is su�ciently
large, i.e. when � >

p
2µ. That is, even though the expected wealth grows

exponentially (and thus never hits zero), for P-almost all !, all the wealth will
vanish due to fluctuations in the long time limit, i.e., every single market player
goes broke with probability one. Think about it!
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8 Day 8, 04.12.2012: Itô stochastic di↵erential
equations

8.1 Martingale representation theorem

Let us repeat Itô’s Lemma: given F 2 C2(Rn) and an Itô SDE

dX
t

= b(X
t

, t)dt+ �(X
t

, t)dB
t

,

the process (Y
t

)
t�0

, Y
t

:= F (X
t

) solves the Itô SDE

dY
t

= rF (X
t

) · dX
t

+
1

2
dX

t

·r2F (X
t

)dX
t

=

✓
rF · b+ 1

2
��> : r2F

◆
dt+

�
�>rF

� · dB
t

where u ·v = u>v denotes the usual inner product between vectors and A : B =
tr(A>B) is the inner product between matrices. Furthermore, in the step from
the first to the second line, we have used the rule that

dtdt = dtdBi

t

= dBi

t

dt = 0 dBi

t

dBj

t

= �
ij

dt , i, j = 1, . . . , n .

If we define the second-order di↵erential operator (the infinitesimal generator
of the stochastic “flow” X

t

that will be introduced later on)

L' =
1

2
��> : r2'+ b ·r' ,

Itô’s formula may be rewritten as

dY
t

= (LF ) (X
t

, t)dt+
�
�>rF

�
(X

t

, t) · dB
t

.

Remark 8.1. The fact that the usual chain does not apply for Itô processes
has to do with the definition of the corresponding stochastic integral. We shall
briefly comment on what makes Itô integral special.

(i) The Martingale Representation Theorem states that every F
t

-martingale
(X

t

)
t�0

(i.e., X
t

is adapted to the filtration generated by B
t

and satisfies
X

s

= E [X
t

|F
s

] ) can be written as the integral

X
t

= X
0

+

Z
t

0

�(!, s)dB
s

for a function � 2 V(0, t), that is uniquely determined. Conversely, every
Itô integral of the form Z

t

0

�
s

dB
s

is a martingale with respect to (F
t

)
t�0

(ii) The Stratonovich integral is another stochastic integral, distinct from the
Itô integral, that is based on the midpoint rule, i.e.,

Z
 (!, s) � dB

s

= lim
n!1

X

j

 
⇣
!, t

j+

1
2

⌘ �
B

tj+1 �B
tj

�
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where we emphasize the di↵erent notation using the “�” symbol and where

t
j+

1
2
:=

t
j

+ t
j+1

2
.

The Stratonovich integral has the property that

E
Z

 
s

� dB
s

�
6= 0 ,

hence the Stratonovich integral is not a martingale, unlike the Itô integral.
Furthermore, the thus defined integral does not satisfy the Itô Isometry.
On the other hand, the usual chain rule applies.

(iii) The Stratonovich integral is used for integrating Stratonovich SDEs

dX
t

= b(X
t

, t)dt+ �(X
t

, t) � dB
t

,

where, again, the “�” indicates that the SDE has to be interpreted in the
Stratonovich sense (i.e., integrated using the Stratonovich integral). One
can also convert Stratonovich SDEs to Itô SDEs using the conversion rule

dX
t

= b(X
t

, t)dt+ �(X
t

, t) � dB
t

=

✓
b+

1

2
�r�

◆
(X

t

, t)dt+ �(X
t

, t)dB
t

.

8.2 Stochastic di↵erential equations: Existence and unique-
ness

We now want to find possible solutions (X
t

)
t�0

⇢ Rn for Itô SDEs of the form

dX
t

= b(X
t

, t)dt+ �(X
t

, t)dB
t

. (8.1)

where b : Rn ⇥ R ! Rn and � : Rn ⇥ R ! Rn⇥d are measurable functions.

Definition 8.2 (Strong solution). Let T > 0. A process (X
t

)
t2[0,T ]

is called
a strong solution of (8.1) if the map t 7! X

t

is almost surely continuous and
adapted to the filtration generated by the Brownian motion (B

t

)
t2[0,T ]

and if it
holds for P-almost all ! (i.e., if it holds P-almost surely) that

X
t

(!) = X
0

(!) +

Z
t

0

b(X
s

(!), s)ds+

Z
t

0

�(X
s

,!)dB
s

(!) (! fixed) .

Definition 8.3 (Uniqueness). The solution of (8.1) is called unique or pathwise
unique if

P(X
0

= X̃
0

) ) P(X
t

= X̃
t

) 8t 2 [0, T ]

for any two solutions (X
t

)
t2[0,T ]

and (X̃
t

)
t2[0,T ]

of (8.1).

Theorem 8.4 (Existence and uniqueness). Let T > 0 and b,� in (8.1) satisfy

(i) (Global Lipschitz condition): 8x, y 2 Rn, 8t 2 [0, T ],

|b(x, t)� b(y, t)|+ |�(x, t)� �(y, t)|  L|x� y|
for some constant 0 < L < 1.6

6Here the norm on the matrix terms �(·, ·) is arbitrary and may be taken to be, e.g., the
Frobenius norm |�| = (

P
i,j |�ij |2)1/2.
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(ii) (Sublinear growth condition): 8x,2 Rn and 8t 2 [0, T ],

|b(x, t)|+ |�(x, t)|  G(1 + |x|)

for some 0 < G < 1.

Given that the above conditions hold, if we have E
⇥
X2

0

⇤
< 1, then (8.1) has a

pathwise unique, strong solution for any T > 0.

Proof. See [19, Thm 5.2.1]. The main elements of the proof of the above theorem
are the Itô Isometry and a Picard-Lindelöf-like fixed-point iteration, just as in
case of ordinary di↵erential equations.

8.3 Applications from physics, biology and finance

Example 8.5. We now consider some examples which use Itô’s formula.

(i) (Geometric Brownian motion): the Itô SDE in this example is

dS
t

= µS
t

dt+ �S
t

dB
t

, S
0

> 0

and the solution to this SDE is

S
t

= S
0

exp

✓
µ� �2

2

◆
t+ �B

t

�

(ii) (Ornstein-Uhlenbeck process): the OU process is a Gaussian process whose
evolution is given by

dX
t

= AX
t

dt+BdW
t

, X
0

= x
0

for A 2 Rn⇥n, B 2 Rn⇥d (i.e., W
t

is d-dimensional Brownian motion).
The solution to the above SDE is

X
t

= eAtx
0

+

Z
t

0

eA(t�s)B dW
s

(iii) (Brownian Bridge): the Brownian bridge (BB
t

)
t2[0,1]

is a Gaussian pro-
cess with the property BB

0

= BB
1

= 0. The associated SDE is

dBB
t

=
1�BB

t

1� t
dt+ dB

t

, BB
0

= 0.

The solution to the above SDE is

BB
t

= (1� t)

Z
t

0

dB
s

1� s
.

The proof is left as an exercise.

(iv) (Logistic growth model): Consider the ODE

dz

dt
= rz (C � z) , z(0) > 0
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Figure 8.1: Typical realization of the logistic growth model with r = 0.5, C = 3
and � = 0.1; for comparison, the dashed green curve shows the deterministic
model with � = 0; the red straight line shows the capacity bound C.

that describes logistic growth of a population where r > 0 is the (initial)
growth rate and C > 0 is the capacity bound. If we add random perturba-
tions we obtain the Itô SDE

dZ
t

= rZ
t

(C � Z
t

)dt+ �Z
t

dB
t

, Z
0

> 0.

which describes logistic growth in a random environment (see Figure 8.1).
This is an interesting example because the drift coe�cient is not globally
Lipschitz—even worse, the drift term can become unbounded. Despite this,
one can obtain an analytic solution to the SDE above, given by

Ẑ
t

=
exp

h⇣
rC � �

2

2

⌘
t+ �B

t

i

Ẑ�1

0

+
R
t

0

exp
⇥�
rC � �

2

2

�
s+ �B

s

⇤
ds

.

Central issues for numerical methods for SDEs

We now consider some key properties which we shall use in evaluating the quality
of a numerical method for solving Itô SDEs of the form

dX
t

= �rV (X
t

)dt+
p
2✏dB

t

(8.2)

with a smooth function V : R ! R (8.1) that will not meet the requirements of
the existence and uniqueness theorem in general.

(i) There are various choices for stable numerical schemes for solving equa-
tions like (8.2). As we will see below, one such choice is

X̃
n+1

� X̃
n

= ��tr(X̃
n

) +
p
2✏�t ⇠

n+1

,

where �t > 0 and the ⇠
n

are suitable i.i.d. random variables, e.g., stan-
dard normal or uniform on the set {�1, 1}, such that X̃

n

⇡ X(t
n

) on a
su�ciently fine grid 0 = t

0

< t
1

< t
3

< . . . with �t = t
n+1

� t
n

.

36



0 5000 10000
−1.5

−1

−0.5

0

0.5

1

1.5

time

x

−1 0 1
0

0.5

1

1.5

2

2.5

x

V
, 

h
is

to
g

ra
m

Figure 8.2: Typical realization of (8.2) with a bistable potential V ; the solution
has been computed using the Euler method (see the next section).

(ii) The numerical scheme under (i) can be shown to yield an approximation
to the continuous SDE on any finite time interval, but diverges when n !
1. On the other hand, we may be interested in the limiting behaviour,
specifically in the stationary distribution of the process (if it exists). In our
case, (an under certain technical assumption on V ), the process satisfies

(P �X�1

t

)(A) !
Z

A

e�V/✏dx

as t ! 1 and for all Borel sets A ⇢ R (assuming that the integral on
the right hand side is properly normalized). For the continuous process
convergence of the distribution can be shown to hold in L1, but it may be
very slow if ✏ in (8.2) is small. For the discrete approximation this question
of convergence does not have an easy answer, for the standard numerical
schemes are not asymptotically stable and the numerical discretization
introduces a bias in the stationary distribution (see Figure 8.2).

(iii) Can we compute functionals of paths of X
t

? For example, can we compute
quantities, such as

E [�(X
T

)] , E
"Z

T

0

 (X
t

, t)dt

#

for bounded continuous functions �,  and T > 0, or can we compute

E[⌧ |X
0

= x]

with ⌧ being some random stopping time (e.g., a first hitting time of a
set E ⇢ R). Questions dealing with such functionals, but also the long-
term stability issue under (ii) will lead us to Markov Chain Monte-Carlo
(MCMC) methods for PDEs and the celebrated Feynman-Kac formula.

9 Day 9, 11.12.2012: Stochastic Euler method

Suggested reference: [11]
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We motivate the ideas in this method by considering the deterministic initial
value problem

dx

dt
= b(x, t) , x(0) = x

0

,

for t 2 [0, T ]. The initial value problem has the solution

x(t) = x
0

+

Z
t

0

b(x(s), s)ds , t 2 [0, T ]

and we can approximate the true solution, employing a suitable quadrature rule
for the integral, e.g., the “rectangle rule”:

x(t
n+1

) = x(t
n

) +

Z
tn+1

tn

b(x(s), s)ds

⇡ x(t
n

) +

Z
tn+1

tn

b(x(t
n

), t
n

)ds

= x(t
n

) + b(x(t
n

), t
n

) (t
n+1

� t
n

) .

Given a su�ciently fine grid of time nodes 0 = t
0

< t
1

< . . . < t
N

= T with
fixed time step �t = t

n+1

� t
n

, we recognize the forward Euler method

x
n+1

= x
n

+�tb(x
n

, t
n

) .

The discretization error induced by the Euler scheme can be shown to satisfy

sup
n=1,...,N

|x(t
n

)� x
n

|  C�t.

for a 0 < C < 1 that is independent of �t.

9.1 The Euler-Maruyama scheme

We construct a simple quadrature rule for the Itô integral. To this end let
(X

t

)
t2[0,T ]

solve the Itô SDE

dX
t

= b(X
t

, t)dt+ �(X
t

, t)dB
t

, X
0

= x

with b : Rn ⇥ R ! Rn and � : Rn ⇥ R ! Rn⇥m for (B
t

)
t>0

a m-dimensional
Brownian motion. We wish to approximate (X

t

)
t>0

on the uniform grid

{0 = t
0

< t
1

< . . . < t
N

= T} , �t = t
n+1

� t
n

.

The “rectangle rule” for the solution between [t
n

, t
n+1

] ⇢ [0, T ] is

X
tn+1 = X

tn +

Z
tn+1

tn

b(X
s

, s)ds+

Z
tn+1

tn

�(X
s

, s)dB
s

⇡ X
tn +

Z
tn+1

tn

b(X
tn , tn)ds+

Z
tn+1

tn

�(X
tn , tn)dBs

= X
tn +�tb(X

tn , tn) +
�
B

tn+1 �B
tn

�
| {z }
=:�Bn⇠N(0,�t)

�(X
tn , tn).
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Definition 9.1. (Euler-Maruyama scheme): For n = 0, . . . , N � 1, the Euler-
Maruyama scheme or Euler’s method gives the n-th iterate as

X̃
n+1

= X̃
n

+�tb(X̃
n

, t
n

) + �(X̃
n

, t
n

)�B
n

, X̃
0

= x

Remark 9.2. A few remarks are in order.

(i) Euler’s method is consistent with the definition of the Itô integral, in that
is evaluates the integrand at the left endpoint of the interval.

(ii) The Euler method gives the values of the numerical path at the time nodes.
A numerical path is obtained by linear interpolation: for t 2 [t

n

, t
n+1

],

X̃
t

(!) = X̃
n

(!) +
(t� t

n

)

�t

⇣
X̃

n+1

(!)� X̃
n

(!)
⌘

= X̃
n

+ (t� t
n

) b(X̃
n

, t
n

) +
t� t

n

�t
�(X̃

n

, t
n

)
�
B

tn+1 �B
tn

�
.

Note that X̃
t

, t  t
n+1

depends on B
tn+1 , i.e., the interpolant X̃

t

is not
non-anticipating.

(iii) Sometimes one wishes to refine the partition for a specific realization, i.e.
using the same path !. For example, by halving the time step from from
�t to �t/2, one obtains new grid points

t
n+

1
2
= t

n

+
�t

2

The values of the refined Brownian motion can be computed by the rule

B
tn+

1
2
(!) =

1

2

⇥
B

tn(!) +B
tn+1(!)

⇤
+

1

2

p
�t ⇠

n

(!)

where the ⇠
n

⇠ N(0, 1) are i.i.d. standard normal random variables.

9.2 Convergence of Euler’s method

We can guess that X̃ ⇡ X(t
n

), but in which sense?

Example 9.3. Let X
t

= B
t

and Y
t

= �B
t

; then X
t

⇠ Y
t

(that is, (X
t

)
t>0

and
(Y

t

)
t>0

have the same distribution) but |X
t

� Y
t

| = 2|B
t

| is unbounded for all t.
Hence pathwise comparisons may not be very informative.

Definition 9.4. (Strong convergence): Let X
tn denotes the value of the true

solution (X
t

)
t2[0,T ]

of our SDE at the time t
n

. A numerical scheme (X̃
n

)
n

=

(X̃�t

n

)
n=0,...,N�1

is called strongly convergent of order � > 0 if

max
n=0,...,N�1

E[|X̃
n

�X
tn |]  C�t�

where 0 < C < 1 is independent of �t but can depend on the length T = N�t
of the time interval.
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Definition 9.5. (Weak convergence): A numerical scheme (X̃
n

)
n

is called
weakly convergent of order � > 0 if

max
n=0,...,N�1

���E[f(X̃
n

)]� E[f(X
tn)]
���  D�t�

for all functions f in a suitably chosen class of functions (e.g. the space of
continuous, bounded functions C

b

(Rn, or the space of polynomials of degree k).
The constant D is independent of �t, but may depend function being considered.

Remark 9.6. A mnemonic for the di↵erence between strong and weak con-
vergence is that strong convergence is about the mean of the error, while weak
convergence is about the error of the mean.

Lemma 9.7. Let f be globally Lipschitz. Then strong convergence implies weak
convergence. The converse does not hold

Proof. Since f is globally Lipschitz, 9 0 < L < 1 such that

|f(x)� f(y)|  L|x� y| 8x, y 2 Rn.

Then
���E[f(X̃

n

)]� E[f(X
tn)]
��� =

���E[f(X̃
n

)� f(X
tn)]
���

 E[|f(X̃
n

)� f(X
tn)|]

 LE[|X̃
n

�X
tn |].

Now consider the converse statement. Let X̃
n

= �X
tn , with E[X̃

n

] = 0 and
E[|X̃

n

|] 6= 0. Then
|E[X̃

n

� E[X
tn ]| = |0� 0| = 0 ,

but
E[|X̃

n

�X
tn |] = 2E[|X̃

n

|] 6= 0 ,

which concludes the proof.

The next theorem states that Euler’s method is strongly (and hence weakly)
convergent.

Theorem 9.8. Let T > 0 and b,� in (8.1) satisfy

(i) (Global Lipschitz condition): 8x, y 2 Rn, 8t 2 [0, T ],

|b(x, t)� b(y, t)|+ |�(x, t)� �(y, t)|  L|x� y|
for some constant 0 < L < 1.

(ii) (Growth condition): 8x,2 Rn and 8t 2 [0, T ],

|b(x, t)|2 + |�(x, t)|2  G(1 + |x|2)
for some 0 < G < 1.

Then Euler’s method is strongly convergent of order � = 1/2 and weakly con-
vergent of order � = 1.
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The proof is essentially based on the integral version of Gronwall’s lemma
(as is common when Lipschitz conditions are involved):

Lemma 9.9 (Gronwall Lemma). Let y : [0, T ] ! R be non-negative and inte-
grable such that

y(t)  A+B

Z
t

0

y(s) ds , 0  t  T ,

for some constants A,B > 0. Then

y(t)  AeBt , 0  t  T .

Now we can prove that the Euler-Maruyama scheme convergences.

Proof of Theorem 9.8. We will show only strong convergence and leave the weak
convergence part as an exercise. Without loss of generality, we assume that
b(x, t) = b(x) and �(x, t) = �(x) are independent of t and that x 2 R is scalar—
this will greatly simplify the notation. Since L2(⌦, P ) ⇢ L1(⌦, P ), i.e.,

E[|X̃
n

�X
tn |] 

q
E[|X̃

n

�X
tn |2] ,

it su�ces to prove that

E[|X̃
n

�X
tn |2]  C2�t

for su�ciently small �t.
Now let ⌧ 2 [0, T ) and define n

⌧

2 N by ⌧ 2 [t
n⌧ , tn⌧+1

) with t
k

= k�t.
Further let X̄

⌧

= X̃
n⌧ be the piecewise constant interpolant of the time-discrete

Markov chain X̃
0

, X̃
1

, X̃
2

, . . .. Then

X̄
⌧

�X
⌧

= X̃
n⌧ �

✓
x+

Z
⌧

0

b(X
s

) ds+

Z
⌧

0

�(X
s

) dB
s

◆

=
n⌧�1X

i=0

(X̃
i+1

� X̃
i

)�
Z

⌧

0

b(X
s

) ds�
Z

⌧

0

�(X
s

) dB
s

=
n⌧�1X

i=0

(b(X̃
i

)�t+ �(X̃
i

)�B
i+1

)�
Z

⌧

0

b(X
s

) ds�
Z

⌧

0

�(X
s

) dB
s

=

Z
tn⌧

0

b(X̄
s

) ds+

Z
tn⌧

0

�(X̄
s

) dB
s

�
Z

⌧

0

b(X
s

) ds�
Z

⌧

0

�(X
s

) dB
s

=

Z
tn⌧

0

(b(X̄
s

)� b(X
s

)) ds+

Z
tn⌧

0

(�(X̄
s

)� �(X
s

)) dB
s

| {z }
discretization error

�
 Z

⌧

tn⌧

b(X
s

) ds+

Z
⌧

tn⌧

�(X
s

) dB
s

!

| {z }
interpolation error
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Squaring both sides of the equality and taking the expectation, it follows with
the inequality (a+ b+ c+ d)2  4(a2 + b2 + c2 + d2),

E[|X̄
⌧

�X
⌧

|2]  4E
"✓Z

tn⌧

0

(b(X̄
s

)� b(X
s

)) ds

◆
2

#

+ 4E
"✓Z

tn⌧

0

(�(X̄
s

)� �(X
s

)) dB
s

◆
2

#

+ 4E

2

4
 Z

⌧

tn⌧

b(X
s

) ds

!
2

3

5+ 4E

2

4
 Z

⌧

tn⌧

�(X
s

) dB
s

!
2

3

5

We will now estimate the right hand side of the inequality term by term, using
Lipschitz and growth conditions:

(i) Noting that the inner Riemann integral can be interpreted as a scalar
product between the functions g(s) = 1 and f(s) = b(X̄

s

)�b(X
s

), we find

E
"✓Z

tn⌧

0

(b(X̄
s

)� b(X
s

)) ds

◆
2

#
 t

n⌧

Z
tn⌧

0

E[|b(X̄
s

)� b(X
s

)|2] ds
| {z }

Cauchy-Schwarz & Fubini

 TL2

Z
tn⌧

0

E[|X̄
s

�X
s

|2] ds
| {z }

Lipschitz bound

.

(ii) For the stochastic integral, the Itô isometry implies

E
"✓Z

tn⌧

0

(�(X̄
s

)� �(X
s

)) dB
s

◆
2

#
=

Z
tn⌧

0

E[|�(X̄
s

)� �(X
s

)|2] ds
| {z }

Itô isometry

 L2

Z
tn⌧

0

E[|X̄
s

�X
s

|2] ds
| {z }

Lipschitz bound

.

(iii) For the interpolation error coming from the drift, we have

E

2

4
 Z

⌧

tn⌧

b(X
s

) ds

!
2

3

5 (⌧ � t
n⌧ )

Z
⌧

tn⌧

E[|b(X
s

)|2] ds
| {z }

Cauchy-Schwarz & Fubini

 �tG

Z
⌧

tn⌧

(1 + E[|X
s

|2]) ds
| {z }

sublinear growth

 M
1

(�t)2 ,

for a constant 0 < M
1

< 1. In the last step we have used that E[|X
s

|2]
is finite by the assumptions on the coe�cients b and �.
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(iv) Finally, using the Itô isometry again, we can bound the remaining stochas-
tic integral by

E

2

4
 Z

⌧

tn⌧

�(X
s

) dB
s

!
2

3

5=

Z
⌧

tn⌧

E[|�(X
s

)|2] ds
| {z }

Itô isometry

 G

Z
⌧

tn⌧

(1 + E[|X
s

|2]) ds
| {z }

sublinear growth

 M
2

�t| {z }
E[|Xs|2]<1

,

for a constant 0 < M
2

< 1.

Setting y(t) = E[|X̄
t

� X
t

|2], the assertion follows from Gronwall’s lemma
with A = M�t for a M > (M

1

�t+M
2

) and B = L2(1 + T ).

9.3 Some practical issues

Remark 9.10. Note that the (strong) error bound for Euler’s method grows
exponentially with T , hence becomes essentially of order one if T = O(� log�t).

Remark 9.11. We shall briefly comment on some implementation issues.

(i) The standard implementation of Euler’s method is

X̃
n+1

= X̃
n

+�tb(X̃
n

, t
n

) +
p
�t�(X̃

n

, t
n

)⇠
n+1

where the ⇠
n

are standard normal, i.i.d. random variables.

(ii) The simplified Euler method uses i.i.d. ⇠0
n

⇠ U({±1}) random variables,
i.e. P (⇠0

n

= 1) = P (⇠0
n

= �1) = 1/2. The advantage of the simplified Eu-
ler scheme is that it is much faster to generate U({±1}) random variables
than N(0, 1) random variables. The disadvantage of the simplified Euler
scheme is that it gives only weak convergence.

Exercise 9.12. Show that the simplified Euler method is weakly convergent.

10 Day 10, 18.12.2012: Kolmogorov backward
equation

Suggested references: [1, 11, 19]

10.1 Further remarks on the Euler-Maruyama scheme

For an inhomogeneous Itô SDE of the form

dX
t

= b(X
t

, t)dt+ �(X
t

, t)dB
t

, X
0

= x, t 2 [0, T ] ,
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with b : Rn ⇥ [0, T ] ! Rn and � : Rn ⇥ [0, T ] ! Rn⇥m, Euler’s method reads

X̃
n+1

= X̃
n

+�t b(X̃
n

, t
n

) +
p
2�t�(X̃

n

, t
n

) ⇠
n+1

(n = 0, . . . , N � 1)

where 0 = t
0

< t
1

< t
2

. . . < t
N

= T with t
n+1

� t
n

= �t, and ⇠
n

⇠ N (0, I)
i.i.d. Recall that Euler’s method is strongly convergent of order 1/2 and weakly
convergent of order 1, i.e.,

sup
n

E[|X̃
n

�X
tn |]  C�t1/2

sup
n

|E[f(X̃
n

)]� E[f(X
tn)]|  D�t

for C,D, independent of �t. In the last inequality, f : Rn ! R is chosen
from a suitable class of functions, e.g., C

b

= {f : continuous and bounded} or
P
k

= {f : polynomials of degree at most k}.7 Note that D may depend on f .

Remark 10.1. A few remarks are in order.

(i) One cannot construct a fully implicit numerical method for SDEs analo-
gous to the backward Euler method for ODEs, due to a lack of measurability
of the resulting discretized solution (see Example 5.6 on p. 23).

(ii) For functionals of (X
t

)
t>0

of the form E[f(X
T

)] we can use a Monte-Carlo
method to get unbiased estimates, e.g.,

E [f(X
T

)] =
1

M

MX

i=1

f(X̃
N

(!
i

)) +O��t+M�1/2

�

Here the error term O��t + M�1/2

�
represents the width of the confidence

interval for estimating the mean E[·]. The numerical complexity, if we want to
achieve an accuracy ✏ > 0 with a certain confidence level, goes like O(✏�3).

10.2 Strongly continuous semigroups

Starting from
dX

t

= b(X
t

)dt+ �(X
t

)dB
t

, X
0

= x

we want to compute

E[f(X
t

)] =

Z

⌦

f(X
t

(!))dP(!)
| {z }

avg. over realizations of Xt

=

Z

Rn

f(y)dP
Xt(y)

| {z }
avg. over distribution of Xt

where f is integrable and P
Xt = P �X�1

t

denotes the distribution of X
t

at time
t > 0 (i.e., the push forward of the base measure P by X

t

).

Remark 10.2. Note that, for a fixed initial value X
0

= x, the expectation
E[f(X

t

)] = E[f(X
t

)|X
0

= x] is always a function of x and t.

7The space Cb(Rn) is dual to the space of all finite Borel measures on (Rn
,B(Rn)).
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Example 10.3 (Heat equation). Let X
t

= B
t

+ x, where (B
t

)
t>0

is Brownian
motion in R. Then X

t

⇠ N(x, t) with density

⇢(y, t) := ⇢(y, t;x) =
1

(2⇡t)1/2
exp

✓
� |y � x|2

2t

◆
.

In the following we will assume that P
Xt has a smooth density ⇢ with respect

to Lebesgue measure, i.e., dP
Xt(y) = ⇢(y, t)dy.

We seek an evolution equation for the conditional expectation

u(x, t) :=

Z

Rn

f(y)⇢(y, t;x)dy = E[f(X
t

)|X
0

= x].

in terms of the functions u or ⇢. We will first need a couple of definitions.

Definition 10.4 (Transition kernel). Let (X
t

)
t>0

⇢ Rn be a homogeneous
Markov process. The transition kernel (also called transition function) is a
function p : [0,1)⇥ Rn ⇥ B(Rn) ! [0, 1] defined by

p(t, x, A) = P (X
t+s

2 A|X
s

= x) s, t � 0, x 2 Rn, A 2 B(Rn)

that satisfies the Chapman-Kolmogorov equation

p(t+ s, x,A) =

Z

Rn

p(t, y, A)p(s, x, dy) =

Z

A

✓Z

Rn

q(t, y, z)q(s, x, y)dy

◆
dz .

Here q(t, x, ·) is the kernel density with respect to the Lebesgue measure (that we
tacitly assume to exist if not stated otherwise).

Definition 10.5 (Strongly continuous contraction semigroup). Let (K, k · k) be
a Banach space with norm k · k. A strongly continuous contraction semigroup
is a one-parameter family of operators S

t

: K ! K such that

(i) S
0

= Id and S
t+u

= S
t

� S
u

for all t, u > 0 (semigroup property)

(ii) lim
t!0

S
t

f = f where the limit is understood with respect to the strong
operator topology, i.e., kS

t

f � fk ! 0 as t ! 0 (continuity)

(iii) kS
t

k  1 for all t > 0 (contraction property)

Definition 10.6. (Feller process): A Markov process (X
t

)
t>0

is called a Feller
process if the operators defined by

(S
t

f)(x) := E [f(X
t

)|X
0

= x] =

Z
f(y)q(t, x, y)dy

form a strongly continuous contraction semigroup in the Banach space (C
0

, k · k1)
where C

0

is the space of bounded functions which vanish at infinity, i.e. the space
of bounded functions with compact support, and k · k1 is the supremum norm.

Example 10.7 (Heat equation, cont’d). Let (B
t

)
t>0

be a Brownian motion.
The Markov process (X

t

)
t>0

defined by X
t

= B
t

+ x is a Feller process with
transition density

q(t, x, y) =
1

(2⇡t)1/2
exp

✓
� |y � x|2

2t

◆
.
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10.3 Feynman-Kac theorem (backward equation)

For all practical purposes the solutions to the SDEs of the above form are of
Feller type. Let us introduce the shorthand

E
x

[f(X
t

)] = E[f(X
t

)|X
0

= x] .

We will now state one version of the famous Feynman-Kac theorem8 that allows
for expressing the semigroup S

t

in terms of the solution to a partial di↵erential
equation (PDE); for further information the reader is referred to [19].

Theorem 10.8 (Feynman-Kac formula). Fix T > 0. Let u(x, t) be the solution
of the linear, parabolic PDE

✓
@

@t
+ L

◆
u(x, t) = 0 , u(x, T ) = f(x), (10.1)

where

L� =
1

2
��> : r2�+ b ·r�.

Then
u(x, t = 0) = E

x

[f(X
T

)]

Proof. The proof uses Itô’s formula for Y
t

= u(X
t

, t):

dY
t

= ru · dX
t

+
@u

@t
dt+

1

2

�
��> : r2u

�
dt

=

✓
@

@t
+ L

◆
u(X

t

, t)dt+
�
�>ru

�
(X

t

, t) · dB
t

.

Now integrate both sides of the equation from 0 to T and use (10.1) to obtain

u(X
T

, T )| {z }
=f(XT )

�u(X
0

, 0) =

Z
T

0

✓
@

@t
+ L

◆
u(X

t

, t)dt

| {z }
=0

+

Z
T

0

�
�>ru

�
(X

t

, t) · dB
t

Note that the rightmost integral is a martingale, given suitable conditions on
the coe�cients of (10.1) that guarantee that u is continuously di↵erentiable.
Taking expectations then yields the assertion:

E
x

[f(X
T

)] = u(x, 0).

Remark 10.9. Equation (10.1) is a so-called backward evolution equation, a
PDE with a terminal condition, and is known as the Kolmogorov backward
equation.

By altering the proof of Theorem 10.8, it is now straightforward to derive
variants of the Feynman-Kac formula and even a forward evolution equation for
the transition density.

8Richard P. Feynman (1918–1988), American Physicist and Nobel Prize Winner; Mark
(Marek) Kac (1914–1984), Polish-American mathematician.
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(i) Let v(x, t) solve

✓
@

@t
� L

◆
v(x, t) = 0 , v(x, 0) = f(x). (10.2)

Then v(x, t) = E
x

[f(X
t

)].

(ii) Let
⇢(y, t;x)dy = P (X

t

2 [y, y + dy] |X
0

= x) .

We will also use the notation ⇢(y, t) := ⇢(y, t;x) when the starting point
x does not change; note that ⇢(y, t;x) = q(t, x, y) is the same as the
transition density for fixed starting value X

0

= x.

Using integration by parts it can be shown that ⇢ solves the Kolmogorov
forward equation (also known as the Fokker-Planck Equation),

✓
@

@t
�A

◆
⇢(y, t) = 0 , lim

t!0

⇢(·, t) = �
x

(10.3)

where A = L⇤ is the formal L2-adjoint of the operator L, i.e.

hf, Lgi =
Z

f(x) (Lg) (x)dx =

Z
(Af) (x)g(x)dy = hAf, gi.

We leave the proofs as an exercise to the reader.

Example 10.10 (Heat equation, cont’d). The heat kernel

⇢(y, t) =
1

(2⇡t)1/2
exp

✓
� |y � x|2

2t

◆

solves the PDE
@⇢

@t
=

1

2

@2⇢

@y2
, lim

t!0

⇢(·, t) = �
x

Semigroup interpretation

The Feynman-Kac theorem provides a connection between certain Itô SDEs and
partial di↵erential equations (most notably Kolmogorov forward and backward
equations). In terms of the solution to (10.2) our semigroup reads

(S
t

f) (x) = E
x

[f(X
t

)] =
�
etLf

�
(x) ,

where v(x, t) = (etLf)(x) is the formal solution of the PDE

@v

@t
= Lv , v(x, 0) = f(x)

In other words, the semigroup has the suggestive representation

S
t

= etL .

We say that S
t

is generated by L.
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11 Day 11, 08.01.2013: Exit times

11.1 Some more semigroup theory

Let (X
t

)
t�0

⇢ Rn be the solution of the time-homogenous SDE

dX
t

= b(X
t

)dt+ �(X
t

)dB
t

, X
0

= x ,

with, e.g.,
b(x) = �rV (x) , �(x) =

p
2✏ ,

with ✏ > 0 and a smooth function V : Rn ! R that is bounded below and
su�ciently growing at infinity (see Fig. 8.2 on p. 37). Further let (S

t

)
t�0

be the
corresponding semigroup, defined by

(S
t

f)(x) = E
x

[f(X
t

)]

where f 2 C
0

(Rn). Here C
0

(Rn) denotes the space of continuous functions that
vanish at infinity, and it comes with a natural norm kfk1 = sup

x2Rn |f(x)|; we
have already seen that S

t

defines a strongly continuous contraction semigroup on
(C

0

(Rn), k ·k1), and that it can be represented by the exponential S
t

= exp(tL)
of the the second-order di↵erential operator

L� =
1

2
��> : r2�+ b ·r� .

There is more to say about the relation between the semigroup and the di↵usion
operator L that is expressed in the following definition.

Definition 11.1 (Infinitesimal generator). Let X = (X
t

)
t�0

be a continuous-
time Markov process with semigroup (S

t

)
t�0

on a Banach space (K, k · k). The
infinitesimal generator of X is defined as

L�(x) = lim
t!0

(S
t

�)(x)� �(x)

t
, (11.1)

provided that the limit exists in (K, k · k).
Remark 11.2. If X = (X

t

)
t�0

is time-discrete on a, say, countable state space
(i.e., X is a Markov chain with transition matrix P = (p

xy

)
x,y

), then

(S
n

f)(x) =
X

y

f(y)p(n)
xy

=
�
Pnf

�
x

,

which suggests to define the discrete generator by Lf = Pf�f , i.e., L = P�Id.

Theorem 11.3. If (X
t

)
t

is the solution of

dX
t

= b(X
t

)dt+ �(X
t

)dB
t

, X
0

= x

and ' 2 C2(Rn) then the infinitesimal generator from (11.1) is given by

L =
1

2
��> : r2 + b ·r.

Proof. The theorem largely follows from Itô’s formula; see [19, Thm. 7.3.3].
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Example 11.4 (Heat equation, cont’d). The operator in the n-dimensional
heat equation

@⇢

@t
=

1

2

nX

i=1

@2⇢

@x2

i

is the L2-adjoint of the generator associated of the n-dimensional Brownian
motion B

t

, i.e., the generator of B
t

is one half the Laplacian,

L =
1

2

nX

i=1

@2

@x2

i

(Note that the Laplacian is essentially self-adjoint.)

Exercise 11.5. Prove that LS
t

= S
t

L, i.e., L (E
x

[f(X
t

)]) = E
x

[Lf(X
t

)].

11.2 Exit times: more Feynman-Kac formulae

Let ⌦ ⇢ Rn be an open and bounded domain with smooth boundary, @⌦ 2 C1.
In this section, we investigate connections between stopped SDEs and linear
boundary value problems (BVPs) of the form

Au = f in ⌦

u = g on @⌦

where A is a second-order di↵erential operator, f 2 C(⌦), g 2 C(@⌦) and the
solution u 2 C2(⌦) \ C(⌦). The function g prescribes the values of u on the
boundary @⌦. The next theorem is a stopping-time version of Itô’s formula.

Theorem 11.6. (Dynkin’s formula): Let ⌧ be a stopping time with E
x

[⌧ ] < 1.
Then for f 2 C2

0

(Rn), we have

E
x

[f(X
⌧

)] = f(x) + E
x

Z
⌧

0

Lf(X
s

)ds

�
.

Proof. The assertion follows from Itô’s formula and the Martingale property of
stopped stochastic integrals; see [19, Lem. 7.3.2].

Example 11.7. We want to compute the mean first exit time (MFET) of n-
dimensional Brownian Motion from the open ball D = {x 2 Rn : |x| < R} of
radius R > 0 (see Fig. 11.1). To this end let X

t

= B
t

+x where we assume that
X

0

= x 2 D. We choose k 2 N and define the stopping time ⌧
k

= k ^ ⌧
D

, with

⌧
D

= inf {t > 0: X
t

/2 D} .

By definition our stopping time ⌧
k

is a.s. finite, so that Dynkin’s formula for
the function f(x) = |x|2 for x 2 D yields

E
x

[f (X
⌧k)] = f(x) + E

x

Z
⌧k

0

1

2
�f(X

s

)ds

�

= |x|2 + nE
x

[⌧
k

] .

In particular, since E
x

[f(X
⌧k)]  E

x

[f(X
⌧D )] = R2, it follows that
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Figure 11.1: How long does 3-dimensional Brownian motion need on average to
leave a sphere of radius R = 1? See Example 11.7 below.

E
x

[⌧
k

]  R2 � |x|2
n

.

Now ⌧
k

! ⌧
D

as k ! 1 and hence, by monotone convergence,

E
x

[⌧
D

] =
R2 � |x|2

n
.

Observe that the MFET is inversely proportional to the dimension of the ball,
which can be understood as follows. If the initial point x is ✏ away from the set
boundary, i.e., if R2 � |x|2 = ✏2 then every dimension adds another direction in
which the particle can exit. Therefore E

x

[⌧
D

] / 1/n.

Remark 11.8. If ⌧ is the first exit time of an open, bounded set ⌦ ⇢ Rn,

⌧
⌦

:= inf {t > 0: X
t

/2 ⌦}
then E

x

[⌧ ] < 1.

Our next result establishes the connection between the mean first exit time
from a set with a boundary value problem specified on that set.

Lemma 11.9 (Mean first exit time). Let ⌦ ⇢ Rn be an open, bounded domain
with su�ciently nice boundary @⌦.

⌧ = inf {t > 0: X
t

/2 ⌦}
Let ' 2 C2(⌦) \ C(⌦) solve the boundary value problem

L'(x) = �1 , x 2 ⌦

'(x) = 0 , x 2 @⌦.
(11.2)
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Figure 11.2: Tilted double well potential (left panel) and mean first passage
time of the light blue region (right panel). The solid line in the right panel
shows the finite di↵erence solution of the MFPT using 1500 grid points, the
dots are the Monte-Carlo estimates for 1000 independent realizations, starting
from each initial value (from x = �2 to x = 2 in 0.1 steps).

Then '(x) = E
x

[⌧ ].

Proof. We can use Itô’s formula (or Dynkin’s formula) for ':

'(X
⌧

) = '(X
0

) +

Z
⌧

0

L'(X
s

)ds+

Z
⌧

0

�
�>r'� (X

s

)dB
s

.

By the assumption that ' is C2 inside the domain ⌦, it follows that the rightmost
term is a Martingale; taking expectations and using the PDE for ', we find

E
x

['(X
⌧

)| {z }
=0

] = '(x) + E
x

 Z
⌧

0

L'(X
s

)| {z }
=�1

ds

�
+ E

x

Z
⌧

0

�
�>r'� (X

s

)dB
s

�
,

where the leftmost term follows from the boundary condition '|
@⌦

= 0. Hence

0 = '(x)� E
x

[⌧ ]

which proves the lemma.

11.3 Applications of mean first exit time formulae

The boundary value problem (11.2) for the MFET can be used to accurately
compute the exit time rather when the system is not too high-dimensional (say,
at most three-dimensional) and Monte-Carlo sampling would be ine�cient (e.g,
if the exit times are extremely large). As an example let us consider our one-
dimensional paradigm, di↵usion in a double-well potential:

dX
t

= �rV (X
t

)dt+
p
2✏ dB

t

, X
0

= x , (11.3)

with V as shown in the left panel of Figure 11.2 below and ✏ ⌧ 1. Further let
A = [�1.1,�1]. We want to compute the mean first passage time (MFPT) of A,
i.e., the mean first exit time of the set R\A ⇢ R. The right panel of Figure 11.2
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Figure 11.3: Process of exocytosis (source: Wikipedia).

shows the comparison of a brute force Monte-Carlo and a PDE solution of the
MFPT. Here the Monte-Carlo solution was based on an the unbiased estimator

'̂(x) =
1

N

NX

i=1

⌧̃x
i

where ⌧̃x denotes the numerical approximation of the first passage time, using
an Euler discretization of (11.3) with initial value x 2 {�2,�1.9, . . . , 1.9, 2} and
N = 1000 independent realizations. The PDE solution was obtained using a
finite di↵erence discretization of the mixed BVP

L'(x) = �1 , x 2 (�3, 3) \ [�1.1, 1]

'(x) = 0 , x 2 [�1.1, 1]

'0(x) = 0 , x 2 {�3, 3}

on a fine grid with grid size �x = 0.004 (i.e., 1500 grid points). In terms of run
time, the PDE solution clearly rules out the Monte-Carlo method (1 sec. vs. 10
hrs.), moreover the PDE solution is much more accurate as can be seen from the
figure. However Monte-Carlo becomes competitive if the dimension grows, for
the computational costs are independent of the dimension (for a single initial
condition), whereas they grow exponentially with the dimension in case of a
grid-based PDE solution—the number of grid points grows like O(2n).

We briefly mention some applications in which MFETs are sought.

Exocytosis Exocytosis is a process by which a cell ejects the content of secre-
tory vesicles into the extracellular domain (see Fig. 11.3). Here the cell can be
modelled by an open bounded domain in R3, and the elastic plasma membrane
by a nice boundary @⌦. The whole process is di↵usion-dominated but strongly
a↵ected by the cell geometry and crowding. A typical question that biologists
ask is, e.g., how long it takes on average for a secretory vesicle (that can be well
modelled as a point particle) that is produced in the Golgi apparatus to reach
the cell membrane.
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Figure 11.4: Migration of atoms into the vacancy in a crystal lattice that can be
interpreted as the di↵usion of the vacancy (source: University of Cambridge).

Vacancy di↵usion in crystals A vacancy is a “missing atom” in an atomic
lattice. If a vacancy is present, one of the adjacent atoms can move into the
vacancy, creating a new vacancy on the former position of the atom. By the
symmetry of the crystal lattice there is an equal probability that any of the
adjacent atoms will move into the vacancy, including the atom that has just
created the vacancy (see Fig. 11.4). It is possible to think of this mechanism as
a moving vacancy, rather than the motion of atoms into the vacancy. In fact the
vacancy undergoes some kind of random walk or di↵usion between lattice sites
and. Physicists are interested in measuring the di↵usivity of the vacancy, i.e.,
how long on average it takes for the vacancy to propagate through the crystal,
which can be expressed in terms of the mean exit time of a test particle from
the periodic unit cell of the crystal.

Transition state theory Consider the reaction of a molecule A to a di↵erent
molecule B by formation of a molecular complex AB, just in the way that is
depicted in Figure 11.5. If the reaction is temperature-activated the situation
can be conveniently modelled by a one-dimensional di↵usion in a bistable po-
tential as is described by (11.3), with V = G being the thermodynamic free
energy associated with the reaction and 0 < ✏⌧ 1 being the temperature in the
system. If we let ⌦ = (�1, b) denote the product state and @⌦ = b, the exit
time problem (11.2) can be shown to have the explicit solution

E
x

[⌧ ] =
1

✏

Z
x

b

Z 1

x

exp

✓
G(z)�G(x)

✏

◆
dzdy .

Now suppose that a is the unique minimum of G in ⌦ and define �G‡ =
G(b)�G(a). Then it follows by Laplace’s method (see [5]) that

lim
✏&0

✏ logE
x

[⌧ ] = �G‡ . (11.4)

Observe that in the limit ✏ ! 0 the MEFT E
x

[⌧ ] becomes essentially E
a

[⌧ ]
and hence independent of the actual initial condition. In other words, at small
temperature the system is always close to the minimum at x = a. If we define
the rate k

AB

of transitions between reactant and product state as 1/E
x

[⌧ ]—the
transition time between the transition state and the product state is negligible—
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Figure 11.5: Temperature-activated reaction of molecule A to a molecule B by
formation of a transition state AB (source: Wikipedia).

and drop the limit, our asymptotic formula turns into

k
AB

⇣ exp

✓
��G‡

k
B

T

◆
,

with ✏ = k
B

T where T is the physical temperature and k
B

is Boltzmann’s
constant. The last equation is known as Kramers-Eyring law in physics or
Arrhenius formula in chemistry.

Yet another Feynman-Kac formula

One possible generalization of Lemma 11.9 is here: Let  2 C2(⌦) \ C(⌦̄) solve
the linear boundary value problem

L (x) = f , x 2 ⌦

 (x) = g , x 2 @⌦.
(11.5)

on the open bounded set ⌦ ⇢ Rn for bounded continuous functions f and g.
Letting ⌧ denote the first exit time of X

t

(generated by L) from ⌦, we have

 (x) = E
x


g(X

⌧

)�
Z

⌧

0

f(X
s

)ds

�
.

Again, the formula follows by using Dynkin’s formula:

E
x

[ (X
⌧

)] =  (x) + E
x

Z
⌧

0

L (X
s

)ds

�

)  (x) = E
x


g(X

⌧

)�
Z

⌧

0

f(X
s

)ds

�
.
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ΔV 

ΩA ΩB 

Figure 12.1: Bistable potential V : R2 ! R with basins of attraction ⌦
A

and
⌦

B

; �V > 0 is the potential barrier between the left well and the saddle point.

12 Day 12, 15.01.2013: Fokker-Planck equation

12.1 Propagation of densities

We begin our discussion by considering again the SDE

dX
t

= �rV (X
t

)dt+
p
2✏dB

t

(12.1)

with a bistable potential V : Rn ! R. Let ⌧
A

be the stopping time

⌧
A

= inf {t > 0 : X
t

/2 ⌦
A

} ,

of an open bounded set ⌦
A

⇢ Rn (see Fig. 12.1 below). Recall the small noise
asymptotics for ⌧

A

, which should be read as in (11.4):

E
x

[⌧
A

] ⇣ e�V/✏ as ✏! 0.

Let (X
t

)
t�0

be an infinitely long realization of (12.1) and consider the situ-
ation depicted in Figure 12.1 where the wells ⌦

A

, ⌦
B

may represent, e.g.,

• biologically relevant conformations of a molecule,

• ice age and interglacial periods of our climate system, or

• reactant and product of a catalytic reaction.

An interesting question now is how much time does X
t

spend in either ⌦
A

or
⌦

B

? To this end recall that the distribution of X
t

at time t is given by

p(t, x, A) = P (X
t

2 A | X
0

= x) , A ⇢ Rn Borel set

with density ⇢(y, t;x), i.e.

p(t, x,⌦
B

) =

Z

⌦B

⇢(y, t;x)dy .
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12.2 Adjoint semigroup: transfer operator

We seek an evolution equation for the density ⇢ and study its properties for the
long time limit t ! 1 (and for ✏ being small). When we do not need to consider
the initial value x, we will use ⇢(y, t) := ⇢(y, t;x) to refer to the density.

Theorem 12.1. Let (X
t

)
t�0

solve the SDE

dX
t

= b(X
t

)dt+ �(X
t

)dB
t

, X
0

= x

with the initial value x being randomly distributed according to the density ⇢
0

.
Then the density ⇢(·, t;x) = ⇢(·, t) solves the Fokker-Planck equation

✓
@

@t
� L⇤

◆
⇢(y, t) = 0

where ⇢(y, 0) = ⇢
0

(y) and L⇤ is the L2-adjoint of the infinitesimal generator

L =
1

2
��> : r2 + b ·r.

Proof. Let u(x, t) = E
x

[f(X
t

)] = (S
t

f)(x) where we recall that (S
t

)
t>0

is the
one-parameter family of semigroups S

t

= etL. Then

E [f(X
t

)] =

Z

Rn

E
x

[f(X
t

)] ⇢
0

(x)dx

=

Z

Rn

u(x, t)⇢
0

(x)dx

=

Z

Rn

(S
t

f)(x)⇢
0

(x)dx

=

Z

Rn

f(x)
�
S⇤
t

⇢
0

�
(x)dx .

Note that

@

@t

Z

Rn

u(x, t)⇢
0

(x)dx =
@

@t

Z

Rn

(Lu)(x, t)⇢
0

(x)dx

=

Z

Rn

(S
t

Lf)(x)⇢
0

(x)dx

=

Z

Rn

f(x)
�
L⇤S⇤

t

⇢
0

�
(x)dx ,

which implies that (exp(tL))⇤ = exp(tL⇤), i.e., L⇤ generates the evolution semi-
group S⇤

t

: (C
0

(Rn))⇤ ! (C
0

(Rn))⇤ on the dual space (C
0

(Rn))⇤—this the space
of (nonnegative) finite Borel measures.9 By definition of ⇢, we also have

E [f(X
t

)] =

Z
f(y) dP

Xt(y) =

Z
f(y)⇢(y, t)dy.

Therefore, Z
f(y)

�
etL

⇤
⇢
0

�
(y)dy =

Z
f(y)⇢(y, t)dy

9Note that the adjoint is defined with respect to the inner product in the space L

2(Rn),
but using a density argument it can be shown that it is su�cient to consider f 2 C0(Rn),
since C0(Rn) is a dense subspace of L2(Rn).
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and, since f 2 C
0

(Rn) was arbitrary, it follows that

�
etL

⇤
⇢
0

�
(y) = ⇢(y, t)

with ⇢(y, 0) = ⇢
0

(y). This yields

@⇢

@t
= L⇤�eL

⇤
t⇢

0

�
= L⇤⇢

so ⇢ solves the Fokker-Planck equation.

Example 12.2 (Ornstein-Uhlenbeck Process). The Ornstein-Uhlenbeck (OU)
process is described by the SDE

dX
t

= AX
t

dt+BdW
t

, X
0

= x ,

where we assume that X
0

= x is fixed, A 2 Rn⇥n and B 2 Rn⇥m. The infinitesi-
mal generator of the process X

t

satisfies (for all scalar-valued twice continuously
di↵erentiable functions h in its domain)

Lh(x) =
1

2
BB> : r2h(x) + (Ax) ·rh(x)

and the formal L2-adjoint of L, L⇤ satisfies

hL⇤u, vi
L

2 =

Z
(L⇤u) vdx =

Z
u (Lv) dx = hu, Lvi

L

2 .

We calculate L⇤ using the above and integration by parts:

Z
u (Lv) dx =

Z
u

✓
1

2
BB> : r2v + (Ax) ·rv

◆
dx

= �1

2

Z
ru ·

✓
1

2
BB>rv

◆
dx�

Z
vr · (uAx)dx

=
1

2

Z
v

✓
1

2
BB> : r2u

◆
dx�

Z
v (ru · (Ax) + ur · (Ax)) dx

=

Z
v

✓
1

2
BB> : r2u� (Ax) ·ru� tr(A)u

◆
dx

which implies that (here tr(·) denotes the trace operator)

L⇤h(x) =
1

2
BB> : r2h(x)� (Ax) ·rh(x)� tr(A)h(x).

This gives us the Fokker-Planck equation,

@⇢

@t
� 1

2
BB> : r2⇢+r · (⇢Ax) = 0 ,

the solution of which we know already (cf. Example 8.5), namely,

X
t

⇠ N
✓
eAtx,

Z
t

0

eAsBB>eA
>
sds

◆
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In other words, the OU process at time t > 0 is Gaussian with mean

E[X
t

] = eAtx

and covariance

E
⇥
(X

t

� E [X
t

]) (X
t

� E [X
t

])>
⇤
=

Z
t

0

eAtBB>eA
>
tdt,

In particular we observe that

lim
t&0

⇢(y, t) = �
x

(y) (weakly).

If the eigenvalue of A lie entirely in the left complex half-plane C� (i.e., have
strictly negative real part), then both mean and covariance converge as t ! 1:

E[X
t

] ! 0

and

E
⇥
(X

t

� E [X
t

]) (X
t

� E [X
t

])>
⇤!

Z 1

0

eAtBB>eA
>
tdt ,

i.e., for almost all initial conditions, the solution ⇢(x, t) of the Fokker-Planck
equation converges to the Gaussian density

⇢1 = N
✓
0,

Z 1

0

eAsBB>eA
>
sds

◆

Exercise 12.3. Compute the solution of the Fokker-Planck equation

@⇢

@t
=

@2

@x2

✓
�2x2

2
⇢

◆
� @

@x
(µx⇢) , lim

t&0

⇢(x, t) = �
a

(x)

for some a > 0. (Hint: write down the corresponding SDE.)

12.3 Invariant measures

We now ask whether the solution (X
t

)
t�0

associated with a given SDE has
an invariant measure, and if so, whether it is approached independently of the
initial distribution of X

0

. Let us make these questions precise.

Definition 12.4 (Invariant measure). A finite, nonnegative Borel measure µ1
is called an invariant measure if X

0

⇠ µ1 implies that X
t

⇠ µ1 for all t > 0.

It readily follows from the properties of the Fokker-Planck equation, that if
⇢1 is the Lebesgue density associated with the invariant measure µ1, then

L⇤⇢1 = 0 .

In other words, stationary distributions are steady-state solutions of the Fokker-
Planck equation.

Example 12.5 (Ornstein-Uhlenbeck process, cont’d). If �(A) ⇢ C�, i.e., all
eigenvalues of A have strictly negative real part, then

⇢1(x) = (det(2⇡C1))�1/2 exp

✓
�1

2
x>C�1

1 x

◆
,

where

C1 =

Z 1

0

eAsBB>eA
>
sds .

(If C1 is not invertible, then C�1

1 is the Moore-Penrose pseudo-inverse.)
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Boltzmann-Gibbs measures

An interesting special class of SDEs with unique known invariant measure are
gradient systems of the form

dX
t

= �rV (X
t

)dt+
p
2✏dB

t

, X
0

= x.

For this class of SDEs, the density of the invariant measure is given by the

⇢1 =
1

Z
e�V/✏ , Z =

Z

Rn

e�V (x)/✏dx ,

provided that the integral exists. The corresponding invariant measure is called
Boltzmann distribution or Gibbs measure.

Recall that our initial question was to ask how much time does the process
(X

t

)
t>0

spend in ⌦
B

. We now answer that question:

µ1(⌦
B

) = lim
T!1

1

T

Z
T

0

�
⌦B (Xt

)dt a.s.

for µ1-almost all initial conditions X
0

= x. (We are anticipating results from
the forthcoming lectures.) The above expression means that the invariant mea-
sure of ⌦

B

is given by the average time the process (X
t

)
t>0

spends in ⌦
B

, where
the average is taken over an infinitely long realization of time. Note that we
can also express the invariant measure of ⌦

B

by a spatial average using the
associated density of the invariant measure,

µ1(⌦
B

) =
1

Z

Z

⌦B

e�V (x)/✏dx.

The spatial average is usually di�cult to compute in dimensions greater than
two or three, but the time average can be computed in a Markov Chain Monte-
Carlo (MCMC) fashion by running a long realization of the SDE.

13 Day 13, 22.01.2013: Long-term behaviour of
SDEs

Suggested references: [7, 21]

13.1 Invariant measures, cont’d

We confine our attention to gradient-type systems of the form

dX
t

= �rV (X
t

)dt+
p
2✏dB

t

, (13.1)

with a smooth potential V : Rn ! R that is bounded below and su�ciently
growing at infinity (e.g., coercive). For su�ciently smooth functions (e.g.,
C2

0

(Rn)), the infinitesimal generator of X
t

and its formal L2-adjoint are

L = ✏� = rV ·r , L⇤ = ✏�+rV ·r+�V .

The corresponding Fokker-Planck equation

@⇢

@t
= ✏�⇢+r · (⇢rV ) , ⇢(x, 0) = ⇢

0

(x) (13.2)
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with ⇢
0

� 0 has the unique stationary solution

⇢1 =
1

Z
e�V/✏ , Z =

Z

Rn

e�V (x)/✏dx ,

where Z < 1 by the assumptions on V .

Example 13.1 (OU process with symmetric sti↵ness matrix). The SDE

dX
t

= �KX
t

dt+
p
2✏dW

t

, X
0

= x ,

with symmetric positive definite (s.p.d.) sti↵ness matrix K 2 Rn⇥n is a gradient
system with quadratic potential

V (x) =
1

2
x>Kx .

Its unique invariant measure is Gaussian with mean zero and covariance C1 =
✏K�1 and has full topological support (i.e., has a strictly positive density ⇢1).

Remark 13.2. A few remarks are in order.

(i) The Fokker-Planck equation can be written in divergence form. In our
case it reads

@⇢

@t
= r · J , J = ✏r⇢+ ⇢rV .

Integrating ⇢(x, t) over x 2 Rn and using Gauss’ theorem, it follows that

d

dt

Z

Rn

⇢(x, t)dx = 0 ,

which implies that

k⇢(·, t)k
L

1
(Rn

)

= k⇢
0

k
L

1
(Rn

)

= 1 .

That is, normalized densities stay properly normalized throughout time.

(ii) It follows by PDE arguments (strong maximum principle for elliptic equa-
tions) that ⇢1 is the only stationary solution of (13.2).

(iii) It is often helpful to think of ⇢1 as the solution to the eigenvalue problem

L⇤v = �v

for the simple eigenvalue � = 0 (it must be simple, because ⇢1 is unique).
Equivalently, we may think of ⇢1 as the solution to the fixed-point equation

S⇤
t

⇢1 = ⇢1 ,

where (S⇤
t

)
t�0

is the adjoint semigroup or transfer operator (propagator).
In other words, ⇢1 is the eigenfunction of S⇤

t

= exp(tL⇤) to the eigenvalue
� = 1. Note that S⇤

t

and L⇤ have the same eigenvectors; their eigenvalues
are related by �(t) = exp(�t), i.e., the eigenvalues of the transfer operator
depend on time, with the sole exception of the simple eigenvalue � = 1.
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Figure 13.1: Bistable potential V : R2 ! R with basins of attraction ⌦
A

and
⌦

B

; �V > 0 is the potential barrier between the left well and the saddle point.

13.2 Convergence to equilibrium

We want to study the long-term behaviour of solutions to (13.2). In particular,
we want to know at which speed the stationary distribution is approached (if
at all). Let us start with some preliminary considerations:

Contraction property. Recall that the semigroup (S
t

)
t�0

: C
0

(Rn) ! C
0

(Rn)
associated with (X

t

)
t�0

is a contraction, i.e., kS
t

k  1 for all t in the operator
norm that is induced by the (supremum) norm on C

0

(Rn). We further know that
kS

t

k is bounded from below by the spectral radius r
�

(S
t

). Since the eigenvalue
� = 1 is simple and the generator L has real spectrum (as we will see below), it
follows that r

�

(S
t

) = 1 and that all other eigenvalues are strictly less than 1 in
modulus. The same goes for S⇤

t

and L⇤. Hence we can expect that all solutions
of (13.2) converge to the stationary solution ⇢1, i.e.,

⇢ = S⇤
t

⇢
0

! ⇢1

in some suitable norm (e.g., L1). This is the good news.

Relaxation time scale. Now comes the bad news. Imagine a situation
as in Figure 13.1 with small noise and recall the asymptotic expression (11.4)
for the mean first exit time from the left well of the potential V : if ⌧ = inf{t >
0: X

t

/2 left well} denotes the first exit time from the left energy well of V as
shown in Figure 13.1, then the mean first exit time satisfies

lim
✏&0

✏ logE
x

[⌧ ] = �V .

This implies that for the initial density in the left well to propagate to the right
well and relax to the stationary distribution, we have to wait at least

T = O
⇣
e�V/✏

⌘
.

Hence when �V � ✏, as is the case in most interesting applications, the typical
time scale on which the convergence ⇢ ! ⇢1 takes place is exponentially large
in the dominant barrier height of the potential V .
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Theorem 13.3 (Bakry & Emery, 1983). Let V satisfy the convexity condition

r2V � ↵I

for some ↵ > 0. Further let ⇢
t

= ⇢(·, t) denote the solution to the Fokker-Planck
equation (13.2) with initial density ⇢

0

2 L1(Rn). Then

k⇢
t

� ⇢1k
L

1
(Rn

)

 e�↵✏tk⇢
0

� ⇢1k
L

1
(Rn

)

.

The proof of the theorem is quite involved (e.g., see [15]), and we will prove
a slightly simpler version instead. This will su�ce to get the idea of the general
proof that is based on entropy estimates. We will need the following definition.

Definition 13.4 (Relative entropy). Let µ be a probability measure on (Rn,B(Rn))
that is absolutely continuous with respect to dµ1 = ⇢1dx. The quantity

H(µkµ1) =

Z

Rn

log

✓
dµ

dµ1

◆
dµ

is called relative entropy or Kullback-Leibler divergence of µ and µ1. We
declare that H = 1 if µ is not absolutely continuous with respect to µ1.

We use the agreement that 0 log 0 = 0. It can be shown, using Jensen’s
inequality, that H is nonnegative, with H(µkµ1) = 0 if and only if µ = µ1
a.e. Even though H is not symmetric in its arguments, it can be used to bound
the variation distance between µ and µ1: if ⇢ and ⇢1 denote the Lebesgue
densities with respect to µ and µ1, then

k⇢� ⇢1k
L

1
(Rn

)


p
8H(µkµ1) . (13.3)

The inequality is known as Csiszár-Kullback inequality [4, 13].

Lemma 13.5. Let ⇢
t

= ⇢(x, t) be the solution of the Fokker-Planck equation
for a quadratic potential

V (x) =
↵

2
|x|2 , ↵ > 0 .

Then
k⇢

t

� ⇢1k
L

1
(Rn

)

 e�↵✏tk⇢
0

� ⇢1k
L

1
(Rn

)

.

Proof. The sketch of proof is based on a Gronwall estimate of the entropy pro-
duction rate dH/dt. Specifically, let (in a slight abuse of notation)

H(⇢
t

k⇢1) =

Z

Rn

log

✓
⇢
t

⇢1

◆
⇢
t

dx .

Further let k⇢
0

k
L

1
(Rn

)

= 1. Using integration by parts and the norm conserva-
tion property of the Fokker-Planck equation, it follows that

dH

dt
=

Z

Rn

@⇢
t

@t
log ⇢

t

dx+
↵

2✏

Z

Rn

|x|2 @⇢t
@t

dx

= �
Z

Rn

(r log ⇢
t

) · (✏r⇢
t

+ ↵x⇢
t

) dx� ↵

✏

Z

Rn

x · (✏r⇢
t

+ ↵x⇢
t

) dx

= �
Z

Rn

✓
✏
|r⇢

t

|2
⇢
t

+ 2↵x ·r⇢
t

+
↵2

✏
|x|2⇢

t

◆
dx

= �
Z

Rn

����
p
✏r log ⇢

t

+
↵p
✏
x

����
2

⇢
t

dx ,
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which shows that the entropy H is nonincreasing along solutions of the Fokker-
Planck equation, i.e., dH/dt  0. (This is to say that H is a Lyapunov function
for ⇢

t

.) Now comes a bit of magic: by using a functional inequality for the
entropy, called logarithmic Sobolev inequality (e.g., see [15]), it can be shown
that the last integral can be bounded from above by �2↵✏H, i.e.,

d

dt
H(⇢

t

k⇢1)  �2↵✏H(⇢
t

k⇢1) .

The inequality is a (functional) di↵erential inequality, and it follows by the
Gronwall Lemma on page 41 that

H(⇢
t

k⇢1)  e�2↵✏tH(⇢
0

k⇢1) .

The Csiszár-Kullback inequality (13.3) then yields the desired result.

Most of the rigorous results that prove exponential convergence of ⇢
t

to-
wards the stationary distribution are for strictly convex potentials. From the
properties of the semigroup S

t

or its adjoint S⇤
t

we may nonetheless expect that

k⇢
t

� ⇢1k  Ce��t

holds true in some suitable norm and for some constants C,� > 0. Let us briefly
explain why.

13.3 Spectral gaps and the space L2(Rn, µ1)

We begin with a short excursus on the spectral properties of the generator and
its semigroup. To this end, let L2(Rn, µ1) denote the space of functions that
are square-integrable with respect to the invariant measure µ1, i.e.,

L2(Rn, µ1) =

⇢
u : Rn ! R :

Z

Rn

|u(x)|2⇢1(x) dx < 1
�

.

This is a Hilbert space with scalar product

hu, vi
µ1

=

Z

Rn

u(x)v(x) ⇢1(x) dx

and induced norm k · k
µ1 . It can be readily seen that L is symmetric as an

operator on C2

0

(Rn) \ L2(Rn, µ1):

hLu, vi
µ1

= �✏
Z

Rn

ru(x) ·rv(x)⇢1(x) dx = hu, Lvi
µ1

. (13.4)

Technical details aside, any (bounded) symmetric operator on a Hilbert space
has real eigenvalues and orthogonal eigenvectors.10 Moreover, by the above,

hLf, fi
µ1

= �✏krfk
µ1 ,

10Clearly L here is an unbounded operator, but it can be shown that it is essentially self-
adjoint on a suitable subspace of C2

0(Rn) \ L

2(Rn
, µ1) which implies that its spectrum is

discrete and real, with eigenfunctions that form an orthonormal basis of L2(Rn
, µ1).
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which proves that L is negative definite on L2(Rn, µ1). The corresponding
eigenvalue problem

L�
n

= �
n

�
n

, n = 0, 1, 2, . . .

is well posed with discrete eigenvalues

�
0

> �
1

� �
2

� . . . ,

where �
0

= 0 is simple, and pairwise orthogonal eigenvectors {�
n

}1
n=0

that (if
properly normalized) form an orthonormal basis of L2(Rn, µ1), i.e.,

h�
i

,�
j

i
µ1

= �
ij

. (13.5)

We can now represent any function f(·, t) 2 L2(Rn, µ1) in terms of the eigen-
functions by the expansion

f(x, t) =
1X

j=0

c
j

(t)�
j

(x) , c
j

(t) = hf(·, t),�
j

i
µ1

.

Fokker-Planck equation in L2(Rn, µ1)

For our purposes it is convenient to normalize the distribution by ⇢1; instead
of ⇢

t

, we consider the evolution of a function  
t

=  (x, t) defined by

⇢(x, t) =  (x, t)⇢1(x) .

Inserting the last expression into the Fokker-Planck equation (13.2) it is easy to
show that  

t

solves the backward Kolmogorov equation

@ 

@t
= L ,  

0

= ⇢
0

/⇢1 .

We assume that  
0

2 L2(Rn, µ1), which is the case whenever ⇢
0

2 L1(Rn) is
continuous and, e.g., compactly supported, such that  

0

admits the expansion

 
0

(x) =
1X

j=0

h 
0

,�
j

i
µ1

�
j

(x) .

Also  
t

= exp(tL) 
0

can be expanded into eigenfunctions. This yields

 
t

=
1X

j=0

h 
0

,�
j

i
µ1

etL�
j

=
1X

j=0

h 
0

,�
j

i
µ1

et�j�
j

where we have tacitly assumed that the sum is uniformly convergent and used
that L and exp(tL) have the same eigenvectors �

j

. Now recall that �
0

= 1 is
the unique eigenvector to the eigenvalue �

0

= 0, corresponding to the stationary
distribution ⇢1, and observe that

h 
0

,�
0

i
µ1

=

Z

Rn

⇢
0

⇢1
⇢1 dx = k⇢

0

k
L

1
(Rn

)

= 1 .

Therefore, with (13.5) and  1 = 1,

k 
t

�  1k2
L

2
(Rn

,µ1)

=
1X

j=1

e2�jt h 
0

,�
j

i2
µ1

 e2�1tk 
0

k2
L

2
(Rn

,µ1)

,
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which shows that  
t

!  1 in L2(Rn, µ1), exponentially fast with rate given
by the first eigenvalue or spectral gap �

1

< 0. In other words,

k 
t

�  1k
L

2
(Rn

,µ1)

 Ce�1t , (13.6)

with C = k 
0

k
L

2
(Rn

,µ1)

.

Remark 13.6. If we remove the scaling by the invariant density and translate
(13.6) into probability densities again, we see that

Z

Rn

|⇢
t

� ⇢1|2⇢�1

1 dx  Ce�1t .

This is not quite what we would like to have as the assumption C < 1 requires
that ⇢

0

is square integrable with respect to ⇢1 / exp(V/✏); a more natural
norm would be L1, but at least our short calculation should have made clear
that convergence to equilibrium is related to the first nonzero eigenvalue(s) of
the generator L. Unfortunately, one can show that

�
1

⇣ e��V/✏ as ✏! 0 ,

that is, in the presence of large energy barriers, the convergence is rather slow
as �

1

⇡ 0 (even though it is still exponential).

14 Day 14, 29.01.2013: Markov chain approxi-
mations

Recall that the probability distribution associated to an SDE of the form

dX
t

= �rV (X
t

)dt+
p
2✏dB

t

, X
0

⇠ ⇢
0

(14.1)

satisfies for all Borel sets A ⇢ Rn

lim
t!1P(X

t

2 A) = µ1(A) a.s.

where

µ1(A) =

Z

A

⇢1(x)dx.

As we have seen, the convergence above is exponentially fast with a rate �
1

<
0 given by the first nonzero eigenvalue of the generator L = ✏� � rV · r.
Unfortunately, for small ✏ > 0,

�
1

⇡ �(E
x

[⌧ ])�1 ,

with ⌧ being the first exit time from the deepest well in the potential energy
landscape, in other words, �

1

may be arbitrarily close to zero.

14.1 Ergodicity

We can evaluate ⇢1(x) / e�V (x)/✏ but we cannot sample from it. There are
two central issues related to sampling the stationary from simulations of (14.1).
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How do we compute expectation value with respect to ⇢1? Put di↵erently,
given a su�ciently long realization (X

t

)
t2[0,T ]

of (14.1), can we assume that
Z

Rn

fdµ1 ⇡ 1

T

Z
T

0

f(X
t

) dt ,

i.e., does X
t

sample ⇢1? And if so, how large must T be? This brings us to
the second question: Can we say anything about the small-noise asymptotics
for the distribution of X

t

and time t? If yes, it might tell us something about
a reasonable choice of T , as the typical relaxation time is exponentially in the
eigenvalue that depends on ✏.11

Remark 14.1. In the case of a two-well potential with V (x) = 0 at the two
minima x = ±1, it can be shown that

µ1
⇤
*

1

2
��1

+
1

2
�
+1

,

i.e., that the invariant density converges (in distribution, or in the weak-⇤ sense)
to the weighted sum of two Dirac measures concentrated at the minima.

Theorem 14.2 (Strong Law of Large Numbers). Let f 2 C
b

(Rn). Then (given
the usual growth, smoothness and boundedness conditions on V ),

E [f ] = lim
T!1

1

T

Z
T

0

f(X
t

)dt a.s.

for almost all initial conditions X
0

= x.

Proof. See [8, Thm. 2.5].

The interpretation of the above statement is that if the SDE has a unique
invariant measure, then almost all realizations converge to the same invariant
distribution, in the sense that expectations agree, a property that is known as
ergodicity.

Remark 14.3. The Law of Large Numbers does not hold for general SDEs. For
example, the infinitesimal generator L may have pure imaginary eigenvalues or
the invariant density ⇢1 may not be everywhere positive. In these cases, the
system may not be ergodic or there may depend on the initial conditions.

14.2 Markov Chain Monte Carlo (MCMC)

Now we consider two possible methods for sampling ⇢1, i.e., for computing
expectation values of an integrable function f .

First attempt: We use the Euler-Maruyama scheme

X̃
n+1

= X̃
n

��trV (X̃
n

) +
p
2✏�B

n+1

,

and take the sample mean

E [f ] ⇡ 1

N

NX

i=1

f(X̃
i

).

We make the following observations:
11We may expect that this choice will have to do with Kramer’s formula, equation (11.4).
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Figure 14.1: Empirical distribution and exact Boltzmann density (red curve)
for the symmetric double-well potential.

(i) We know that on any finite time interval [0, T ] the weak error satisfies

max
n

|E[f(X
tn)]� E[f(X̃

n

)]|  C�t

where C = AeBT for suitable constants A,B > 0 (see Section 9.2). This
implies that the error in this attempt is essentially of order 1 as T ! 1.

(ii) We may think of (X̃
n

)
n2N0 as a homogeneous Markov chain with the

transition probability kernel

Q(x,A) = P(X̃
n+1

2 A | X̃
n

= x)

for a Borel set A ⇢ Rn, with the Gaussian transition density

q(x, y) = (4⇡✏�t)�n/2 exp

✓
� |y � x+�trV (x)|2

4✏�t

◆
.

The associated invariant distribution satisfies

µ̃1(A) =

Z

Rn

Q(x,A)dµ̃1(x) (14.2)

or equivalently

⇢̃1(y) =

Z

Rn

q(x, y)⇢̃1(x)dx.

(Recall that in the discrete-state space setting the invariant distribution
is the left eigenvector of the transition matrix to the eigenvalue � = 1, i.e.,
we have µ̃1(x) =

P
y

µ̃1(y)q
xy

; equation (14.2) is simply the continuous
analogue of the last identity.) It is easy to see that (see Fig. 14.1)

µ1(A) 6=
Z

Rn

Q(x,A)dµ1(x) , (14.3)

i.e., µ1 is not invariant under the Euler scheme.12 In fact for an arbitrary
12Try V (x) = x

2.
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potential V , the Markov chain with transition probability Qmust not have
an invariant measure at all (i.e., the chain may be transient).

Remark 14.4. It is not advisable to let �t ! 0 and N ! 1 in the attempt
above to reduce the numerical error, because even with large time steps, simu-
lations take a long time. Decreasing the time steps would make simulations too
long to be practical.

Second attempt: By slightly altering the transition rule of the Euler scheme
we can construct a Markov chain (Y

n

)
n

� 0 that is similar to (X̃
n

)
n�0

with
transition probability P (x,A) satisfying

µ1(A) =

Z

Rn

P (x,A)dµ1(x) .

We will do this by “Metropolizing” the euler scheme. To this end let us recall
some facts from the theory for Markov chains:

(i) A su�cient condition for invariance is detailed balance, i.e.

⇢1(x)p(x, y) = ⇢1(y)p(y, x) 8x, y 2 Rn

where p(x, y) is the Lebesgue density of the transition kernel P (x, ·). Then
Z

Rn

⇢1(x)p(x, y)dy = ⇢1(x)P (x,Rn) = ⇢1(x) =

Z

Rn

⇢1(y)p(y, x)dy,

where the last equality is exactly the condition that ⇢1 must fulfil in order
to be the invariant density under P .

(ii) If the Markov chain is irreducible and aperiodic with strictly positive in-
variant measure µ1 > 0, then the Markov chain is ergodic, i.e. for almost
all initial conditions x it follows that

lim
n!1 sup

A⇢Rn
|Pn(x,A)� µ1(A)| = 0

where Pn(x,A) := P (X
n

2 A | X
0

= x) and the supremum runs over all
measurable sets A ⇢ Rn (total variation norm); e.g., see [17].

14.3 Metropolis-Adjusted Langevin Algorithm (MALA)

We combine the Euler scheme for equation (14.1), also known as Langevin al-
gorithm, with the Metropolis Hastings scheme.

Algorithm 14.5. MALA proceeds by iterating the following two steps (proposal
and acceptance-rejection step):

1. Let Y
n

= x and generate a proposal according to

y = x��trV (x) +
p
2✏�B

n+1

.

(The proposal step x 7! y has transition probability density q(x, y).)
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Figure 14.2: Empirical distributions and exact Boltzmann density (orange
curve) for the symmetric double-well potential: The left panel shows the system-
atic bias of Euler’s method, the right panel shows the Metropolized simulation.

2. Accept Y
n+1

= y with probability

a(x, y) := min

⇢
1,
⇢1(y)q(y, x)

⇢1(x)q(x, y)

�
;

otherwise, set Y
n+1

= x.

The above acceptance criterion yields a Markov chain with transition prob-
ability density p(x, y) = q(x, y)a(x, y) for x 6= y. The total rejection probability,
i.e., the probability that the chain remains at x then is

r(x) = 1�
Z

Rn

q(x, y)a(x, y)dy

The transition kernel of MALA can be expressed as

P (x, dy) = q(x, y)a(x, y)dy +

✓
1�

Z

Rn

q(x, y)a(x, y)dy

◆
�
x

(dy) .

The Markov chain described by the transition density above satisfies de-
tailed balance with respect to the invariant density ⇢1 and inherits all the nice
properties from the Euler scheme (such as irreducibility and aperiodicity), so
the Markov chain is ergodic. In particular, for any stable time step �t > 0,

sup
A⇢Rn

|Pn(x,A)� µ1(A)k ! 0 as n ! 1

and

E [f ] = lim
N!1

1

N

NX

i=1

f(Y
i

) a.s.

Example 14.6. Figure 14.2 shows a comparison between the ordinary and the
Metropolis-adjusted Euler scheme for a quadratic potential. We observe that
for a reasonable time step, the Euler scheme shows a systematic bias that is
corrected by the acceptance-rejection procedure of MALA.

In some cases the convergence can be shown to be geometric, which is the
analogue of the exponential convergence in the time-continuous case.
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Figure 15.1: 3⇥ 3 lattice with states “o” and “x”, also known as Tic Tac Toe.
The total number of lattice configurations is |S| = 29 (source: Wikipedia).

Theorem 14.7 (Geometric ergodicity of MALA). If V (x) ⇠ |x|q for |x| ! 1
with 1  q < 2, then

sup
A⇢Rn

|Pn(x,A)� µ1(A)|  C%n

for some 0 < % < 1.

Proof. See [20]

Remark 14.8. We conclude with some comments on MALA.

(i) Convergence of MALA holds for all stable step sizes �t and under fairly
mild conditions on the potential V , basically polynomial growth is enough.

(ii) The speed of convergence does depend on the details of the potential land-
scape; for potentials that do not fall under the category of Theorem 14.7,
the convergence can be shown to be slower than geometric (see [20]).

(iii) Even though MALA converges independently of �t, the acceptance prob-
ability decreases when �t is increased. Hence there is a trade-o↵ between
many integration steps and small rejection rate (�t small) and fewer in-
tegration steps with a possibly large rejection rate (�t large).

15 Day 15, 05.02.2013: Small-noise asymptotics

Suggested references: [2]

15.1 The Ising model as an illustration

We consider the approximation of SDEs by jump processes. The motivation
for this is the 2-dimensional Ising model, which is a physical model for ferro-
magnetism and that is one of the best-studied models in statistical physics.13

13Ernst Ising (1900-1998), German physicist and mathematician
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Figure 15.2: Typical realization of the Ising model for large N .

The model consists of an n ⇥ n lattice consisting of N = n2 sites, with a spin
s
i

2 {±1} for each i = 1, . . . , N . In this case, the process takes values in the
state space consisting of all possible configurations s = (s

1

, . . . , s
N

) of spins
on the lattice (2N possible configurations; see Fig. 15.1). The interesting el-
ement comes in via interactions between spins on adjacent lattice sites; these
interactions are determined by the Hamiltonian

H(s) := �
X

hi,ji
Js

i

s
j

for J > 0 constant. The summation index hi, ji indicates that the sum goes
over all nearest neighbours as we consider only interactions between nearest
neighbours connected by an edge on the lattice.

The dynamics of the process are described by a Metropolis Markov chain
with, e.g., single-spin flips which are uniformly chosen and accepted with prob-
ability

min {1, exp(��H/✏)} , �H = H(s0)�H(s)

where s and s0 denote the states before and after the random spin flip. It then
readily follows that the resulting discrete-time Markov chain (S

t

)
t2N0 has an

invariant measure with counting density

⇢1 =
1

Z✏

exp(�H/✏) , Z✏ =
X

s2S
exp(�H(s)/✏)

on the space S of lattice configurations.

Mean field approximation of the Ising model The exact (microscopic)
configuration of the lattice is not particularly interesting, and one is rather in-
terested in certain average quantities. A typical observable that people studying
the Ising model care about is the magnetization

m =
1

N

NX

i=1

s
i

,
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Figure 15.3: Double-well potential with reflecting barriers at x = ±1.

or the corresponding probability density at time t � 0. Clearly,

m =2
⇢
�1,�1 +

1

N
, . . . , 1� 1

N
, 1

�

so it is reasonable to expect that the density will converge to a smooth function
of m and t as N ! 1 and the time step between the random perturbation
goes to zero (at a rate that depends upon N); see Figure 15.2 for illustration.
The latter is called the mean field limit of the Ising model (see, e.g., [3]). In
fact it can be shown that, under certain additional assumptions on the type of
random perturbation, the magnetization process M

t

converges weakly (i.e., in
distribution) to a di↵usion process X

t

on [�1, 1] that satisfies

dX
t

= �rV (X
t

)dt+
p
2✏dB

t

. (15.1)

where V is a bistable potential having minima at x = ±1 and being infinite for
x /2 [�1, 1] (see Fig. 15.3). Alternatively you might wish to think of a system
with a smooth potential where reflecting boundary conditions are imposed at
the interval boundaries.14

Small-noise limit We wish to study the zero temperature limit of (15.1) in
terms of the corresponding Fokker-Planck equation. The following two obser-
vations are central:

• For all ✏ > 0 and V 2 C1([�1, 1]) the solution of (15.1) is ergodic with
respect to the invariant measure µ✏

1 of (15.1) with Lebesgue density

⇢✏1 =
1

Z✏

e�V/✏�
[�1,1]

, Z✏ =

Z
1

�1

e�V/✏ dx ,

14Reflecting boundary conditions appear as Neumann boundary conditions in the backward
equation and as zero-flux conditions in the forward or Fokker-Planck equation.
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i.e.,
kP

Xt � µ✏

1k
L

1
([�1,1])

! 0

as t ! 1.

• The asymptotic transition rates between the minima satisfy (cf. page 53)

k✏± ⇣ 1

⇡

p
V 00(±1)|V 00(0)| e��V/✏ , (15.2)

where �V = V (0)� V (1) is the energy barrier.

15.2 Laplace’s method

Equation (15.2) above follows from the application of Laplace’s method ap-
plied to the boundary value problem (11.2) for the mean first exit time that is
the inverse of the transition rate. Laplace’s method is used for estimating the
asymptotic behaviour of integrals of the form

lim
✏!0

Z
b

a

e�V (x)/✏ dx

where V has a unique minimum in [a, b] ⇢ R. For our purposes the following
variant of Laplace’s asymptotic formula is most suitable.

Lemma 15.1. Let V 2 C3(R) have a unique global minimum at x⇤ 2 R with
V 00(x⇤) > 0. Further let a, b 2 R such that x⇤ 2 [a, b] Then

lim
✏&0

 r
V 00(x⇤)
2⇡✏

eV (x

⇤
)/✏

Z
b

a

exp(�V (x)/✏) dx

!
= 1 .

or, using shorthand notation,

Z
b

a

exp(�V (x)/✏) dx '
s

2⇡✏

V 00(x⇤)
e�V (x

⇤
)/✏

as ✏& 0.

Proof. By Taylor’s theorem,

V (x) = V (x⇤) +
1

2
V 00(x⇤)(x� x⇤)2 +

1

6
V 000(⇠

x

)(x� x⇤)3

for some ⇠
x

2 R strictly between x and x⇤. Hence, using the properties of
Gaussian integrals, we have

Z
b

a

e�V (x)/✏ dx = e�V (x

⇤
)/✏

Z 1

�1
exp

✓
� 1

2✏
V 00(x⇤)(x� x⇤)2

◆
dx+ o(

p
✏e�1/✏)

= e�V (x

⇤
)/✏

s
2⇡✏

V 00(x⇤)
+ o(

p
✏e�1/✏) ,

from which the assertion follows.
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Remark 15.2. The missing factor “1/2” in the asymptotic reaction rate (15.2)
is due to the fact that we have imposed boundary conditions at the minima, so
only one half of the Gaussian integral enters the formula.

Laplace’s formula can be readily applied to find the zero-noise limit of µ✏

1
from above. To this end, let us consider a bistable potential as in Figure 15.3.
We assume that V 2 C3(R) is bounded from below by V (±1) = 0, the curva-
tures at x = ±1 , however, may be di↵erent. (All derivatives or the alike are
understood as one-sided limits from the interior of the interval [�1, 1].)

Corollary 15.3. Let dµ✏

1 / exp(�V/✏)�
[�1,1]

dx as before. Then

µ✏

1
⇤
* u�

1��1

+ u+

1�1. (15.3)

with weights

u±
1 =

p
V 00(⌥1)p

V 00(�1) +
p
V 00(1)

(15.4)

Proof. Application of Lemma 15.1 to

µ✏

1(R) = µ✏

1((�1, 0]) + µ✏

1([0,1))

yields the desired result.

15.3 Kramers’ problem

We now come to the low-temperature (i.e., small-noise) limit of (15.1) with
reflecting boundary conditions at x = ±1. To this end we study the associated
Fokker-Planck equation on the domain ⌦ = [�1, 1]⇥ [0,1),

k(✏)
@⇢✏

@t
= r · (✏r⇢✏ +rV ⇢✏) , for (x, t) 2 (�1, 1)⇥ (0,1)

⇢✏ = ⇢
0

, for (x, t) 2 [�1, 1]⇥ {0}
0 = ✏

@⇢✏

@n
+
@V

@n
⇢✏ , for (x, t) 2 {�1, 1}⇥ [0,1) .

(15.5)

Here k(✏) is a scaling factor, which we shall call transition time scale and that
will be chosen in such a way that the limiting transition rates between the
minima stay of order one as ✏! 0. The last equation in (15.5) imposes reflect-
ing boundary conditions by requiring that the probability flux in the direction
normal to the boundary vanishes, i.e.,

✏
@⇢✏

@n
+
@V

@n
⇢✏ = ✏

@⇢✏

@x
+
@V

@x
⇢✏ = 0

where n is the (zero-dimensional) unit normal to the boundary, which, in our
case, consists only of the boundary points {±1}.

Weighted Fokker-Planck equation The steady-state solution of (15.5) is
shown in Figure 15.4 for various values of ✏. We observe that the invariant
measure µ✏

1 concentrates around the minima of V as ✏ is decreased. Note
that the corresponding density ⇢✏1 does not converge to a smooth function as
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⇢
✏

(±1) = O(1/
p
✏). It is hence useful to switch to a density representation with

respect to µ✏

1, i.e., instead of ⇢✏ we consider the weighted density (cf. Sec. 13.3)

u✏

t

=
dµ✏

t

dµ✏1
,

that turns out to be much better behaved in the limit ✏ ! 0, and which turns
the Fokker-Planck equation into (we use again the shorthand u✏

t

= u✏(·, t))

k(✏)
@u✏

@t
= ✏�u✏ �rV ·ru✏ , for (x, t) 2 (�1, 1)⇥ (0,1)

u✏ =
⇢
0

⇢✏1
, for (x, t) 2 [�1, 1]⇥ {0}

0 =
@u✏

@n
, for (x, t) 2 {�1, 1}⇥ [0,1) .

(15.6)

Note that the weighting has turned the zero-flux boundary condition in (15.5)
into the Neumann boundary condition @u✏/@n = 0. As we have argued µ✏

1
converges in distribution to a sum of point measures that are located at the
energy minima where the relative weights are given by (15.4). We may therefore
expect that u✏ converges to a counting density u = (u�, u+) supported on the
states +1 and �1, with a dynamics having curvature-dependent rates that are
such that the limiting equation has the invariant measure given by (15.3)–(15.4).
The following theorem from [14] formalizes our considerations.

Theorem 15.4. Let µ✏ = ⇢✏dx with ⇢✏ = u✏⇢✏1 be the solution of (15.5) with
scaling factor k(✏) = exp(��V/✏) and �V = V (0)� V (1). If

sup
✏>0

Z

[�1,1]

|u✏

0

|2dµ✏

1 < 1

and
µ✏

0

⇤
* u�(0) ��1

+ u+(0) �
1

as ✏& 0, with u�(0) + u+(0) = 1, then

µ✏

t

⇤
* u�(t) ��1

+ u+(t) �
1

for all t � 0 where the counting density u(t) = (u�(t), u+(t)) is continuously
di↵erentiable in t and solves the ODE

du�

dt
= k�u+ � k+u�

du+

dt
= k+u� � k�u+,

for k± = 1

⇡

p
V 00(⌥1)|V 00(0)|.

Proof. We give only a sketch of the basic arguments and refer to [14] for details.

(i) As a first step, the Fokker-Planck equation is recast in weak form. To
this end notice that the weighted Fokker-Planck equation (15.6) formally
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Figure 15.4: Stationary density ⇢✏1 / exp(�V/✏)�
[�1,1]

for various values of ✏.

resembles the Kolmogorov backward equation, and it follows from our
previous considerations in Section 13.3 that the operator

L = ✏��rV ·r
equipped with Neumann boundary conditions at x = ±1 is essentially self-
adjoint in the weighted Hilbert space L2([�1, 1], µ✏

1). As a consequence,
equation (15.6) admits the following weak (variational) formulation

a✏
✓
@u✏

@t
, v✏
◆
+ b✏ (u✏, v✏) = 0

with test functions v✏ 2 H1([�1, 1], µ✏

1), where

H1([�1, 1], µ✏

1) :=

(
u 2 L2([�1, 1], µ✏

1) :

Z

[�1,1]

|ru|2dµ✏

1 < 1
)

is the (weighted) Sobolev space of L2 functions whose derivatives are in
L2, and we have introduced the bilinear forms15

a✏(u, v) =

Z

[�1,1]

uv dµ✏

1

b✏(u, v) = �✏
Z

[�1,1]

ru ·rv dµ✏

1 .

(ii) Secondly, one shows that the functional a✏(·, ·) + b✏(·, ·) converges in a
suitable sense to a limiting quadratic form a0(·, ·) + b0(·, ·) with

a0(u, v) =
1

2
u · v

b0(u, v) = �1

2
u ·Kv .

15Recall from Section 13.3 that hLu, viµ✏
1

= hu, Lviµ✏
1
, i.e., L is symmetric with respect

to the µ

✏
1-weighted scalar product.
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The latter can then be interpreted as the variational form of the transport
equation for the density u(t) = (u+(t), u�(t)), i.e.,

du

dt
= Ku ,

with the 2⇥ 2 rate matrix

K =

✓
k� �k+

�k� k+

◆
.

The convergence proof heavily relies on Laplace’s method for the integrals
defining a✏ and b✏; the notion of convergence that is appropriate for this
purpose is the notion of �-convergence that will not be discussed here; for
the details, see [14] and the references therein.

(iii) The last step essentially follows from the properties of �-convergence that
imply that minimizers of a✏(·, ·) + b✏(·, ·) weakly converge to minimizers
of the limiting functional a0(·, ·) + b0(·, ·), which then gives the weak-⇤
convergence of ⇢✏

t

/⇢✏1 to the counting density u(t). (One of the technical
di�culties arises from the fact that the test functions are from a function
space that depends upon the parameter ✏ via the invariant measure µ✏

1.)

Remark 15.5. We shall briefly comment on the last result.

(i) The original problem of the small-noise limit of the Fokker-Planck equa-
tion goes back to the article [12] from 1940 by the Dutch physicist Hans
Kramers (1894–1952), one of the founding fathers of reaction rate theory.

(ii) To obtain nontrivial limit dynamics as ✏! 0, the choice of the time scale
k(✏) is crucial. When k(✏) is beyond the Arrhenius time scale exp(��V/✏)
then the dynamics is not su�ciently accelerated, resulting in K = 0. On
the other hand, when k(✏) ⌧ exp(��V/✏), then the speed up is too fast
and the system relaxes instantaneously to its equilibrium state (u±

1).

(iii) We have considered only the case of a bistable potential with two minima of
equal depth, even though we allowed for di↵erent curvatures. The rigorous
proof of the case when V (�1) 6= V (1) is still open.
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