
Lecture notes for Numerik IVc - Numerics for

Stochastic Processes, Wintersemester 2012/2013.

Instructor: Prof. Carsten Hartmann

Scribe: H. Lie

Course outline

1. Probability theory

(a) Some basics: stochastic processes, conditional probabilities and ex-
pectations, Markov chains

References: [MS05,Kle06]

2. Stochastic di↵erential equations

(a) Brownian motion: properties of the paths, Strong Markov Property

References: [MS05,Øks03,Arn73]

(b) Stochastic integrals: Itô integrals, Itô calculus, Itô isometry

References: [MS05,Øks03,Arn73]

(c) SDEs: existence and uniqueness of solutions, numerical discretiza-
tion, applications from physics, biology and finance

References: [Øks03,Arn73,KP92]

(d) Misc: Kolmogorov forward and backward PDEs, infinitesimal gen-
erators, semigroup theory, stopping times, invariant distributions,
Markov Chain Monte Carlo methods for PDEs and SDEs

References: [Øks03,Arn73,KP92]

3. Filtering theory (if time permits)

(a) Linear filtering: conditional expectation, best approximation, Kalman-
Bucy filter for SDEs

Reference: [Jaz07,Øks03]

4. Approximation of stochastic processes

(a) Spectral theory of Markov chains: infinitesimal generator, metasta-
bility, aggregation of Markov chains

References: [HM05,Sar11]

(b) Markov jump processes: applications from biology, physiocs and fi-
nance, Markov decision processes, control theory

References: [GHL09]
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Figure 1: Simulation of a butane molecule and its approximation by a 3-state
Markov chain (states in blue, green and yellow; solvent molecules not shown).

1 Day 1, 16.10.2012

1.1 Di↵erent levels of modelling

1.1.1 Time-discrete Markov chains

Time index set I is discrete, e.g. I ✓ N and state space S is countable or finite,
e.g. S = {s

1

, s

2

, s

3

} (see Figure 1). Key objects are transition probabilities.
For a state space S = {1, . . . , n}, the transition probabilities p

ij

satisfy

p

ij

= P (X
t+1

= j | X
t

= i)

and yield a row-stochastic matrix P = (p
ij

)
i,j2S

.

1.1.2 Markov jump processes

These are time-continuous, discrete state-space Markov chains. Time index set
I ✓ R

+

, S discrete. For a fixed time step h > 0, the transition probabilities are
given by (see Figure 2)

P (X
t+h

= s

j

|X
t

= s

i

) = h`

ij

+ o(h)

where L = (`
ij

)
i,j2S

and P

h

are matrices satisfying P

h

= exp (hL).
Note: the matrix L is row sum zero, i.e.

P
j

`

ij

= 0. The waiting times for
the Markov chain in any state s

i

are exponentially distributed in the sense that

P (X
t+s

= s

i

, s 2 [0, ⌧) |X
t

= s

i

) = exp (`
ii

⌧)

2



Figure 2: Simulation of butane: typical time series of the central dihedral angle
(blue: metastable di↵usion process, red: Markov jump process)

and the ‘average waiting time’ is �`
ii

(by definition of the exponential distribu-
tion).

Note: the spectrum of the matrix P

h

is contained within the unit disk, i.e.
for every eigenvalue � of P

h

, |�|  1. This property is a consequence of P
h

being
row-stochastic, i.e. that

P
j

P

h,ij

= 1. Since P

h

= exp(hL) it follows that

�(P
h

) ⇢ D :=
�
x 2 R2 | |x|  1

 , �(L) ⇢ C� = {y 2 C |Re(y)  0}
Example 1.1. Suppose one has a reversible reaction in which one has a large
collection of N molecules of the same substance. The molecules can be either
in state A or state B and the molecules can change between the two states. Let
k

+ denote the rate of the reaction in which molecules change from state A to B

and let k� denote the rate at which molecules change from state B to A.
For t > 0, consider the quantity

µ

A

i

(t) := P (number of molecules in state A at time t is i)

where i = {0, . . . , N}. One can define quantities µ

B

i

(t) in a similar way, and
one can construct balance laws for these quantities, e.g.

dµ

A

i

(t)

dt

= k

+

µ

A

i+1

(t) + k

�
µ

A

i�1

(t)� (k+ + k

�)µA

i

(t).

The above balance law can be written in vector notation using a tridiagonal
matrix L. By adding an initial condition one can obtain an initial value problem

dµ

A(t)

dt

= L

>
µ

A(t), µ

A(0) = µ

0

.

The solution of the initial value problem above is

µ

A(t) = µ

0

exp
�
tL

>�
.
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1.1.3 Stochastic di↵erential equations (SDEs)

These are time-continuous, continuous state space Markov chains. SDEs may
be considered to be ordinary di↵erential equations (ODEs) with an additional
noise term (cf. Figure 2). Let b : Rn ! Rn be a smooth vector field and let x(t)
be a deterministic dynamical system governed by the vector field b(·). Then
x(t) evolves according to

dx

dt

= b(x), x(0) = x

0

. (1)

Now let (B
t

)
t>0

be Brownian motion in Rd, and let (X
t

)
t>0

be a dynamical
system in Rd which evolves according to the equation

dX

t

dt

= b(X
t

) +
dB

t

dt

. (2)

The additional term dBt
dt

represents ‘noise’, or random perturbations from the
environment, but is not well-defined because the paths of Brownian motion are
nowhere di↵erentiable. Therefore, one sometimes writes

dX

t

= b(X
t

)dt+ dB

t

,

which is shorthand for

X

t

= X

0

+

Z
t

0

b(X
t

)dt+

Z
t

0

dB

t

.

The most common numerical integration method for SDEs is the forward
Euler method. If x is a C

1 function of time t, then

dx

dt

����
t=s

= lim
h!0

x(s+ h)� x(s)

h

.

The forward Euler method for ODEs of the form (1) is given by

X

t+h

= X

t

+ hb(X
t

)

and for SDEs of the form (2) it is given by

X

t+h

= X

t

+ hb(X
t

) + ⇠

h

where 0 < h ⌧ 1 is the integration time step and the noise term ⇠ in the Euler
method for SDEs is modeled by a mean-zero Gaussian random variable.

For stochastic dynamical systems which evolve according to SDEs as in (2),
one can consider the probability that a system at some point x 2 Rd will be in
a set A ⇢ Rd after a short time h > 0:

P (X
t+h

2 A |X
t

= x) .

The associated transition probability density functions of these stochastic dy-
namical systems are Gaussian because the noise term in (2) is Gaussian.

What has been the generator matrix L in case of a Markov jump process is
an infinite-dimensional operator acting on a suitable Banach space. Specifically,

Lf(x
0

) = lim
t!0

E
x0 [f(Xt

)]� f(x
0

)

t

,

provided that the limit exists. Here f : Rn ! R is any measurable function and
E
x0 [·] denotes the expectation over all random paths of X

t

satisfying X

0

= x

0

.
L is a second-order di↵erential operator if f is twice di↵erentiable.
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2 Day 2, 23.10.2012

Preliminaries from probability theory
Let (⌦, E ,P) be a probability space, where ⌦ is a set and E ✓ 2⌦ is a �-field

or �-algebra on ⌦, and P is a probability measure (i.e., P is a nonnegative,
countably additive measure on (⌦, E) with the property P(⌦) = 1).

2.1 Conditioning

Let A 2 E be a set of nonzero measure, i.e. P(A) > 0 and define E
A

to be the
set of all subsets of A which are elements of E , i.e.

E
A

:= {E ⇢ A | E 2 E} .
Definition 2.1 (Conditional probability, part I). For an event A and an event
E 2 E

A

, the conditional probability of E given A is

P(E|A) :=
P(E \A)

P(A)
.

Remark 2.2. Think of P
A

:= P(· |A) as a probability measure on the measurable
space (A, E

A

).

Given a set B 2 E , the characteristic or indicator function �
B

: ⌦ ! {0, 1}
satisfies

�

B

(x) =

(
1 x 2 B

0 x /2 B.

Definition 2.3 (Conditional expectation, part I). Let X : ⌦ ! R be a random
variable with finite expectation with respect to P. The conditional expectation
of X given an event A is

E(X|A) =
E [X�

A

]

P(A)
.

Remark 2.4. We have

E(X|A) =
1

P(A)

Z

A

XdP =

Z
XdP

A

.

Remark 2.5. Observe that P(E|A) = E [�
E

|A].

Up to this point we have only considered the case where A satisfies P(A) > 0.
We now consider the general case.

Definition 2.6 (Conditional expectation, part II). Let X : ⌦ ! R be an
integrable random variable with respect to P and let F ⇢ E be any sub-sigma
algebra of E. The conditional expectation of X given F is a random variable
Y := E [X|F ] with the following properties:

• Y is measurable with respect to F : 8B 2 B(R), Y �1(B) 2 F .

• We have Z

F

XdP =

Z

F

Y dP 8F 2 F .
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Remark 2.7. The second condition in the last definition amounts to the pro-
jection property as can be seen by noting that

E [X�
F

] =

Z

F

XdP =

Z

F

Y dP = E [Y �
F

] = E [E [X|F ]�
F

] .

By the Radon-Nikodym theorem [MS05], the conditional expectation exists and
is unique up to P-null sets.

Definition 2.8 (Conditional probability, part II). Define the conditional prob-
ability of an event E 2 E given A by P(E|A) := E [�

E

|A]

Exercise 2.9. Let X, Y : ⌦ ! R and scalars a, b 2 R. Prove the following
properties of the conditional expectation:

• (Linearity):
E [aX + bY |A] = aE [X|A] + bE [Y |A] .

• (Law of total expectation):

E [X] = E [X|A] + P(A) + E [X|Ac]P(Ac)

• (Law of total probability):

P(B) = P(B|A)P(A) + P(B|Ac)P(Ac).

Example 2.10. The following is a collection of standard examples.

• Gaussian random variables: Let X
1

, X
2

be jointly Gaussian with distri-
bution N(µ,⌃), where

µ =

✓
E[X

1

]
E[X

2

]

◆
, ⌃ =

✓
a b

b c

◆

such that ⌃ is positive definite. The density of the distribution is

⇢(x) =
1p

det(2⇡⌃)
exp


�1

2
(x� µ)> ⌃ (x� µ)

�

(Ex.: Compute the distribution of X
1

given that X
2

= a for some a 2 R.)

• (Conditioning as coarse-graining): Let Z = {Z
i

}M
i=1

be a partition of ⌦,
i.e. ⌦ = [M

i=1

Z

i

with Z

i

\ Z

j

= ; and define

Y (!) =
MX

i=1

E [X |Z
i

]�
Zi(!).

Then Y = E [X|Z] is a conditional expectation (cf. Figure 3)

• (Exponential waiting times): exponential waiting times are random vari-
ables T : ⌦ ! [0,1) with the memoryless property:

P (T > s+ t |T > s) = P (T > t) .

This property is equivalent to the statement that T has an exponential
distribution, i.e. that P(T > t) = exp(��t) for a parameter value � > 0.
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Figure 3: Simulation of butane, coarse-grained into three states Z
1

, Z
2

, Z
3

.

2.2 Stochastic processes

Definition 2.11 (Stochastic process). A stochastic process X = {X
t

}
t2I

is
a collection of random variables on a probability space (⌦, E ,P) indexed by a
parameter t 2 I ✓ [0,1). We call X

• discrete in time if I ✓ N
0

• continuous in time if I = [0, T ] for any T < 1.

How does one define probabilities for X? We provide a basic argument
to illustrate the possible di�culties in defining the probability of a stochastic
process in an unambiguous way. By definition of a stochastic process, X

t

=
X

t

(!) is measurable for every fixed t 2 I, but if one has an event of the form

E = {! 2 ⌦ | X
t

(!) 2 [a, b] 8t 2 I}
how does one define the probability of this event? If t is discrete, the �-additivity
of P saves us, together with the measurability of X

t

for every t. If, however, the
process is time-continuous, X

t

is defined only almost surely (a.s.) and we are
free to change X

t

on a set A
t

with P(A
t

) = 0. By this method we can change X
t

on A = [
t2I

A

t

, The problem now is that P(A) need not be equal to zero even
though P(A

t

) = 0 8t 2 I. Furthermore, P(E) may not be uniquely defined. So
what can we do? The solution to the question of how to define probabilities for
stochastic processes is to use finite-dimensional distributions or marginals.

Definition 2.12. (Finite dimensional distributions): Fix d 2 N, t
1

, . . . , t

d

2 I.
The finite-dimensional distributions of the stochastic process X for (t

1

, . . . , t

d

)
are defined as

µ

t1,...,td(B) := P
(Xtk

)k=1,...,d
(B) = P ({! 2 ⌦ |(X

t1(!), . . . , Xtd(!)) 2 B})

for B 2 B(Rd).
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Here and in the following we use the shorthand notation P
Y

:= P � Y �1 to
denote the push forward of P by the random variable Y .

Theorem 2.13. (Kolmogorov Extension Theorem): Fix d 2 N, t
1

, . . . , t

d

2 I,
and let µ

t1,...,td be a consistent family of finite-dimensional distributions, i.e.

• for any permutation ⇡ of (1, . . . , d),

µ

t1,...,td(B1

⇥ . . . B

d

) = µ

(t⇡(1),...,t⇡(d)
(B

⇡(1)

⇥ . . .⇥B

⇡(d)

)

• For t

1

, . . . , t

d+1

2 I, we have that

µ

t1,...,td+1(B1

⇥ . . . B

d

⇥ R) = µ

t1,...,td(B1

⇥ . . .⇥B

d

).

Then there exists a stochastic process X = (X
t

)
t2I

with µ

t1,...td as its finite-
dimensional distribution.

Remark 2.14. The Kolmogorov Extension Theorem does not guarantee unique-
ness, not even P-a.s. uniqueness, and, as we will see later on, such a kind of
uniqueness would not be a desirable property of a stochastic process.

Definition 2.15. (Filtration generated by a stochastic process X): Let F =
{F

t

}
t2I

with F
s

⇢ F
t

for s < t be a filtration generated by F
t

= � ({X
s

|s  t})
is called the filtration generated by X.

2.3 Markov processes

Definition 2.16. A stochastic process X is a Markov process if

P (X
t+s

2 A |F
s

) = P (X
t+s

2 A |X
s

) (3)

where

P (·|X
s

) := P (·|�(X
s

)) ,

P (E|�(X
s

)) := E [�
E

|�(X
s

)]

for some event E.

Remark 2.17. If I is discrete, then X is a Markov process if

P (X
n+1

2 A | X
0

= x

0

, . . . , X

n

= x

n

) = P (X
n+1

2 A | X
n

= x

n

)

Example 2.18. Consider a Markov Chain (X
t

)
t2N0 on a continuous state space

S ⇢ R and let S be a �-algebra on S. Let the evolution of (X
t

)
t2N0 be described

by the transition kernel p(·, ·) : S ⇥ S ! [0, 1] which gives the single-step tran-
sition probabilities:

p(x,A) := P (X
t+1

2 A | X
t

= x)

=

Z

A

q(x, y)dy.

In the above, A 2 B(S) and q = dP
d�

is the density of the transition kernel
with respect to Lebesgue measure. The transition kernel has the property that
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8x 2 S, p(x, ·) is a probability measure on S, while for every A 2 S, p(·, A) is
a measurable function on S.

For a concrete example, consider the Euler-Maruyama discretization of an
SDE for a fixed time step �t,

X

n+1

= X

n

+
p
�t⇠

n+1

, X

0

= 0,

where (⇠
i

)
i2N are independent, identically distributed (i.i.d) Gaussian N (0, 1)

random variables. The process (X
i

)
i2N is a Markov Chain on R. The transition

kernel p(x,A) has the Gaussian transition density

q(x, y) =
1p
2⇡�t

exp


�1

2

|y � x|2
�t

�
.

Thus, if X
n

= x, then the probability that X
n+1

2 A ⇢ R is given by

P (X
n+1

2 A|X
n

= x) =

Z

A

q(x, y)dy.

3 Day 3, 30.10.2012

Recapitulation:

• A stochastic process X = (X
t

)
t2I

is a collection of random variables X
t

:
⌦ ! R indexed by t 2 I (e.g. I = [0,1)) on some probability space
(⌦, E ,P).

• A filtration F := (F
t

)
t2I

is a collection of increasing sigma-algebras satis-
fying F

t

⇢ F
s

for t < s. A stochastic processX is said to be adapted to F if
(X

s

)
st

is F
t

-measurable. For example, if we define F
t

:= �(X
s

: s  t),
then X is adapted to F .

• The probability distribution of a random variable X is given in terms of
its finite dimensional distributions.

Example 3.1 (Continued from last week). Let I = N
0

and consider a sequence
(X

n

)
n2N0 of random variables X

n

= X

�t

n

governed by the relation

X

�t

n+1

= X

�t

n

+
p
�t⇠

n+1

, X

�t

0

= 0a.s. (4)

where �t > 0, and (⇠
k

)
k2N0 are i.i.d. random variables with E [⇠

k

] = 0 and
E
⇥
⇠

2

k

⇤
= 1 (not necessarily Gaussian). To obtain a continuous-time stochastic

process, the values of the stochastic process on non-integer time values may be
obtained by linear interpolation (cf. Figure 4 below). We want to consider the
limiting behaviour of the stochastic process in the limit as �t goes to zero. Set
�t = t/N for a fixed terminal time t < 1 and let N ! 1 (�t ! 0). Then, by
the central limit theorem,

X

�t

N

=

r
t

N

NX

k=1

⇠

k

*

p
tZ (5)

where Z ⇠ N (0, 1), and “*” means “convergence in distribution”, i.e., weak
convergence of the induced probability measure; equivalently, the limiting ran-
dom variable is distributed according to N (0, t). In other words the limiting
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Figure 4: Sample paths of (X�t

n

)
n

for �t = 0.05, 0.002, 0.001 over the unit time
interval [0, 1], with piecewise constant interpolation. The lower right plot shows
the histogram (i.e., the unnormalized empirical distribution) of (X�t

1000

) at time
t = 1, averaged over 10 000 independent realizations.

distribution of the random variable X

�t

N

for fixed t = N�t is the same as the
distribution of a centered Gaussian random variable with variance t. As this is
true for any t > 0, we can think of the limiting process as a continuous-time
Markov process B = (B

t

)
t>0

with Gaussian transition probabilities,

P (B
t+s

2 A |B
s

= x) =

Z

A

q

s,t

(x, y)dy

=
1p

2⇡|t� s|

Z

A

exp

✓
� |y � x|2

2|t� s|
◆
dy.

The stochastic process B is homogeneous or time-homogeneous because the
transition probability density q

s,t

(·, ·) does not depend on the actual values of
t and s, but only on their di↵erence, i.e.,

q

s,t

(·, ·) = q̃|s�t|(·, ·) (6)

Remark 3.2. The choice of exponent 1/2 in
p
�t = (�t)1/2 in (5) is unique.

For (�t)↵ with ↵ 2 (0, 1

2

), the limit of X�t

n

“explodes” in the sense that the
variance of the process blows up, i.e., E[(X�t

N

)2] ! 1 as N ! 1. On the other
hand, for (�t)↵ with ↵ > 1/2, X�t

N

! 0 in probability as N ! 1.
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3.1 Brownian motion

Brownian motion is named after the British botanist, Robert Brown (1773-
1858), who first observed the random motion of pollen particles suspended in
water. Einstein called the Brownian process “Zitterbewegung” in his 1905 paper,
Über die von der molekularkinetischen Theorie der Wärme gefordete Bewegung
von in ruhenden Flüssigkeiten suspendierten Teilchen. The Brownian motion is
a continuous-time stochastic process which is nowhere di↵erentiable. It is also a
martingale in the sense that on average, the particle stays in the same location
at which it was first observed. In other words, the best estimate of where the
particle will be after a time t > 0 is its initial location.

Definition 3.3. (Brownian motion) The stochastic process B = (B
t

)
t>0

with
B

t

2 R is called the 1-dimensional Brownian motion or the 1-dimensional
Wiener process if it has the following properties:

(i) B

0

= 0 P-a.s.

(ii) B has independent increments, i.e., for all s < t, (B
t

� B

s

) is a random
variable which is independent of B

r

for 0  r  s.

(iii) B has stationary, Gaussian increments, i.e., for t > s we have1

B

t

�B

s

D

= B

t�s

(7a)

D

= N (0, t� s). (7b)

(iv) Trajectories of Brownian motion are continuous functions of time.

We now make precise some important notions:

Definition 3.4. (Filtered probability space) A filtered probability space is a prob-
ability space (⌦,F ,P) with a filtration (F

t

)
t�0

such that 8t � 0,

F
t

⇢ F .

Remark 3.5. One may write (⌦,F ,F
t

,P) to refer to a filtered probability space.
However, if one is working with a particular stochastic process X, one may
consider the sigma-algebra F on ⌦ to simply be the smallest sigma-algebra which
contains the union of the FX

t

, where FX

t

:= �(X
s

: s  t). In symbols, we
define the sigma-algebra in the probability space to be

F := _
t�0

F
t

:= � ([
t�0

F
t

) .

Definition 3.6 (Martingale). A stochastic process X = (X
t

)
t>0

is a martingale
with respect to a filtered probability space (⌦,F ,F

t

,P) if X satisfies the following
properties:

(i) X is adapted to F , i.e. X
t

is measurable with respect to F
t

for every t � 0

(ii) X is integrable: X 2 L

1(⌦,P), i.e.

E [|X|] =
Z

⌦

|X(!)|dP(!) < 1

1The notation “X
D
= Y ” means “X has the same distribution as Y ”.
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(iii) X has the martingale property: 8t > s � 0

E [X
t

|F
s

] = X

s

.

Definition 3.7. (Gaussian process) A 1-dimensional process G = (G
t

)
t>0

is
called a Gaussian process if for any collection (t

1

, . . . , t

m

) ⇢ I for arbitrary
m 2 N

0

, the random variable (G
t1 , . . . , Gtm) has a Gaussian distribution, i.e. it

has a density

f(g) =
1p

det(2⇡⌃)
exp


�1

2
(g � µ)>⌃�1(g � µ)

�
(8)

where g = (g
1

, . . . , g

m

), µ 2 Rm is a constant vector of means and ⌃ = ⌃> 2
Rm⇥m is a symmetric positive semi-definite matrix.

Remark 3.8. The Brownian motion process is a Gaussian process with the
vector of means µ = 0 and covariance matrix

⌃ =

0

BBBB@

t

1

0 . . . 0

0 t

2

� t

1

. . .
...

...
. . .

. . . 0
0 . . . 0 t

m

� t

m�1

1

CCCCA
(9)

The covariance matrix is diagonal due to the independence of the increments of
Brownian motion.

Remark 3.9. Some further remarks are in order.

(a) Conditions (i)-(iii) define a consistent family of finite-dimensional dis-
tributions. Hence, the existence of the process B is guaranteed by the
Kolmogorov Extension Theorem.

(b) Conditions (i)-(iii) imply that E [B
t

] = 0 and E [B
t

B

s

] = min(t, s) 8s, t 2
R. The proof is left as an exercise.

(c) The discrete process (X�t

n

)
n2N0 converges in distribution to a Brownian

motion (B
t

)
t�0

if the time discrete is linearly interpolated between two suc-
cessive points. In other words, if we consider the continuous-time stochas-
tic processes (X�t

t

)
t>0

(which is obtained by linear interpolation between
the X

�t

N

) and B as random variables on the space of continuous trajec-
tories (C(R

+

) and B(C(R
+

))), then the process (X�t

t

)
t>0

converges in
distribution to B.

(d) We have that

E
⇥
(B

t

�B

s

)2
⇤
= E

⇥
(B

t�s

)2
⇤
by (7a) in Definition 3.3

= |t� s| by (7b) in Definition 3.3.

(e) Brownian motion enjoys the following scaling invariance, also known as
self-similarity of Brownian motion: for every t > 0 and ↵ > 0,

B

t

D

= ↵

�1/2

B

↵t

.
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An alternative construction of Brownian motion

Observe that we have constructed Brownian motion by starting with the scaled
random walk process and using the Kolmogorov Extension Theorem. Now we
present an alternative method for constructing Brownian motion that is useful
for numerics, called the Karhunen-Loève expansion of Brownian motion. We will
consider this expansion for Brownian motion on the unit time interval [0, 1].

Let {⌘
k

}
k2N be a collection of independent, identically distributed (i.i.d)

Gaussian random variables distributed according to N (0, 1), and let {�
k

(t)}
k2N

be an orthonormal basis of

L

2([0, 1]) =

⇢
u : [0, 1] ! R :

Z
1

0

|u(t)|2dt < 1
�
. (10)

By construction, the basis functions satisfy

h�
i

,�

j

i =
Z

1

0

�

i

(t)�
j

(t)dt = �

ij

,

and we can represent any function 8f 2 L

2([0, 1]) by

f(t) =
X

k2N
↵

k

�

k

(t)

for ↵
k

= hf,�
k

i. We have the following result.

Theorem 3.10. (Karhunen-Loève): The process (W
t

)
0t1

defined by

W

t

=
X

k2N
⌘

k

Z
t

0

�

k

(s)ds (11)

is a Brownian motion.

Proof. We give only a sketch of the proof. For details, see the Appendix in
[MS05], or [KS91]). The key components of the proof are to show the following:

(i) The infinite sum which defines the Karhunen-Loève expansion is absolutely
convergent, uniformly on [0, 1].

(ii) It holds that E [W
t

] = 0 and E [W
t

W

s

] = min(s, t).

4 Day 4, 06.11.2012

4.1 Brownian motion

From last week, we saw that the Brownian motion (B
t

)
t�0

is a continuous-time
stochastic process on R with

• stationary, independent, Gaussian increments

• a.s. continuous paths. That is, for fixed !, each (B
t

)
t�0

(!) is a continuous
trajectory in R.

13



Moreover the scaled random walk defined by

X

�t

n+1

= X

�t

n

+
p
�t⇠

n+1

with linear interpolation converges weakly (i.e. converges in distribution) to
the Brownian motion process. Above, the (⇠

n

)
n2N are independent, identically

distributed (i.i.d) normalized Gaussian random variables (i.e. ⇠

n

is Gaussian
with mean zero and variance 1).

Remark 4.1. Two remarks are in order.

• Continuity can be understood using the Lévy construction of Brownian
motion on the set of dyadic rationals,

D :=
[

n2N
D

n

, D

n

:=

⇢
k

2n
: k = 0. . . . , 2n

�
.

The construction of Brownian motion on the unit time interval is as fol-
lows. Let {Z

t

}
t2D

be a collection of independent, normalized random vari-
ables defined on a probability space. Define the collection of functions
(F

n

)
n2N, where F

n

: [0, 1] ! R are given by

F

n

(t) :=

8
><

>:

0 t 2 D

n�1

2�(j+1)/2

Z

t

t 2 D

j

\D
j�1

lin. interp. in between.

Then the process

B(t) =
1X

n=1

F

n

(t).

is indeed a Brownian motion on [0, 1]. The Gaussianity of the {Z
t

}
t2D

leads to the stationary, independent Gaussian increments of the process
(B

t

)
t2[0,1]

. The continuity of the process follows from an application of
the Borel-Cantelli Lemma, which states that there exists a random and
almost surely finite number N 2 N such that for all n � N and d 2 D

n

,
|Z

d

| < c

p
n holds. This boundedness condition implies that 8n � N we

have a decay condition for the F

n

:

kF
n

k1 < c

p
n2�n/2

.

Therefore the sum
P

j

F

j

(·) converges uniformly on [0, 1]. As each F

j

is
continuous and the uniform limit of continuous functions is continuous,
the process (B

t

)
t2[0,1]

is continuous. For more details, see [MP10].

• The Hausdor↵ dimension dimH of Brownian motion paths depends on the
dimension of the space Rd in which the Brownian motion paths live.2 Let
B

[0,1]

= {B
t

2 Rd : t 2 [0, 1]} be the graph of B
t

over I = [0, 1]. Then

dimHB

[0,1]

=

(
3/2 d = 1

2 d � 2 .

2If you do not know what this is, just think of the box counting dimension that is an upper
limit of the Hausdor↵ dimension.
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Figure 5: Sample paths of the Karhunen-Loève expansion of (W
t

for M =
2, 64, 2048 basis functions (you can guess which one is which). The lower right
plot shows the unnormalized histogram of W

t

at time t = 1, using M = 64 basis
functions and averaged over 10 000 independent realizations.

The significance of this is as follows: if you consider Brownian motion
paths confined to a smooth and compact two-dimensional domain and im-
pose reflecting boundary conditions, then the Brownian motion paths will
fill the domain in the limit as t ! 1.

4.2 Brownian bridge (Karhunen-Loève expansion of Brow-

nian motion)

Theorem 4.2. Let {⌘
k

}
k2N be i.i.d. normalized random variables and {�

k

}
k2N

form a real orthonormal basis of L2([0, 1]). Then

W

t

=
X

k2N
⌘

k

Z
t

0

�

k

(s)ds

is a Brownian motion on the interval I = [0, 1].

Exercise 4.3. Show that, for the definition of (W
t

)
t2[0,1]

above, it holds that
E [W

t

W

s

] = min(s, t).

Remark 4.4. Unlike the scaled random walk construction of Brownian motion,
no forward iterations are required here. This helps for the consideration of
round-o↵ errors in the construction of (W

t

)
t2[0,1]

. Furthermore:
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• Standard choices for the orthonormal basis {�
k

}
k2N are Haar wavelets or

trigonometric functions. Hence the numerical error can be controlled by
truncating the series and by the choice of the basis.

• To obtain a Brownian motion on any general time interval [0, T ], it su�ces
to use the scaling property, e.g.

W

[0,T ]

D

=
p
TW

[0,1]/T

=
p
T

X

k2N
⌘

k

Z
t/T

0

�

k

(s)ds.

4.3 Application: filtering of Brownian motion

Suppose we know that W

0

= 0 and W

1

is equal to some constant !. Without
loss of generality, let ! = 0. Suppose we wanted to generate a Brownian motion
path which interpolated between the values W

0

= 0 and W

1

= 0.

Definition 4.5. A continuous, mean-zero Gaussian process (BB

t

)
t�0

is called
a Brownian bridge to ! if it has the same distribution as (W

t

)
t2[0,1]

conditional
on the terminal value W

1

= !. Equivalently, (BB

t

)
t�0

is a Brownian bridge if

Cov [BB

t

BB

s

] = min(s, t)� st.

Lemma 4.6. If (W
t

)
t2[0,1]

is a Brownian motion, then BB

t

= W

t

� tW

1

is a
Brownian bridge.

Proof. Observe that

E [BB

t

] = E [W
t

� tW

1

] = 0� t · 0 = 0,

so that (BB

t

)
t2[0,1]

is indeed mean-zero. The process (BB

t

)
t2[0,1]

inherits con-
tinuity from the process (W

t

)
t2[0,1]

. The covariance process is given by

Cov(BB

t

BB

s

) = E [BB

t

BB

s

] = E [(W
t

� tW

1

) (W
s

� sW

1

)]

= E [W
t

W

s

]� tE [W
1

W

s

]| {z }
=min(s,1)

�sE [W
1

W

t

]| {z }
=min(t,1)

+tsE [W
1

W

1

]

= min(t, s)� ts� st+ ts .

4.3.1 How does one simulate a Brownian bridge?

First approach: forward iteration, using Euler’s method. The time interval is
[0, 1] and we have a time step of �t := 1/N , so we have (N +1) discretized time
nodes (t

n

= n�t)
n=0,...,N

and (N+1) values (Y �t

n

)
n=0,...,N

. Let {⇠
n

}
n=0,...,N�1

be a collection of i.i.d. normalized random variables. Forward iteration gives

Y

�t

n+1

= Y

�t

n

✓
1� �t

1� t

n

◆
+

p
�t⇠

n+1

.

It holds that 1 � t

N�1

= �t by definition of �t = 1/N . Therefore from the
formula above we have

Y

�t

N

=
p
�t⇠

N+1

.
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Therefore Y �t

N

is a mean zero Gaussian random variable with variance�t. While
this implies that Y �t

N

should converge in probability to the value 0 as the step
size �t ! 0, the forward iteration approach is not optimal because the random
variable ⇠

N+1

is continuous, so

P
�
Y

�t

N

= 0
�
= 0.

Therefore this construction of the Brownian bridge to the value ! = 0 will in
general not yield processes which are at 0 at time t = 1. As a matter of fact,
Y

�t

N

is unbounded and can be arbitrarily far away from zero.
Second approach: Recall the Karhunen-Loéve construction of Brownian

motion and choose trigonometric functions as an orthonormal basis. Then the
process (W

t

)
t2[0,1]

given by

W

t

(!) =
p
2

MX

k=1

⌘

k

(!)
sin((k � 1

2

)⇡t

(k � 1

2

)⇡

is a Brownian motion and we can define the Brownian bridge to ! at t = 1 by

BB

t

= W

t

� t(W
1

� !).

Remark 4.7. It holds that

BB

t

=
p
2
X

k2N
⌘

k

sin(k⇡t)

k⇡

=
X

k2N
⌘

k

p
�

k

 

k

(t),

where {�
k

, 

k

}
k2N =

�p
2/k⇡, sin(k⇡t)

 
k2N is the eigensystem of the covariance

operator T : L1([0, 1]) ! L

1([0, 1]) of the process (BB

t

)
t2[0,1]

, defined by

(Tu)(t) =

Z
1

0

Cov(BB

t

BB

s

)| {z }
=min(t,s)�st

u(s)ds ,

i.e.,
T 

k

(·) = �

k

 

k

(·).
The second approach works for any stochastic process which has finite variance
over a finite time interval. For details, see [Xiu10].

5 Day 5, 13.11.2012 (Lecturer: Stefanie W.)

5.1 Stochastic Integration (Itô integral)

Recall that Brownian motion (B
t

)
t>0

is a stochastic process with the following
properties:

• B

0

= 0 P-a.s.

• 80  t

0

< t

1

< t

2

< . . . < t

n

, the increments B
ti �B

ti�1 are independent
for i = 1, . . . , n and Gaussian with mean 0 and variance t

i

� t

i�1

.
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Figure 6: Sample paths of the Brownian bridge approximation, using the Euler
scheme with�t = 0.05 (left panel) and Karhunen-Loève expansion withM = 20
basis functions (right panel).

• t 7! B

t

(!) is continuous P-a.s. but is P-a.s. nowhere di↵erentiable.

One of the motivations for the development of the stochastic integral lies in
financial mathematics, where one wishes to determine the price of an asset
that evolves randomly. The French mathematician Louis Bachelier is generally
considered one of the first people to model random asset prices. In his PhD
thesis, Bachelier considered the following problem. Let the value S

t

of an asset
at time t > 0 be modeled by

S

t

= �B

t

where � > 0 is a scalar that describes the volatility of the stock price. Let f(t)
be the amount of money an individual invests in the asset in some infinitesimal
time interval [t, t+ dt]. Then the wealth of the individual at the end of a time
interval [0, T ] is given by

Z
T

0

f(t)dS
t

= �

Z
T

0

f(t)dB
t

.

However, it is not clear what the expression ‘dB
t

’ means. In this section, we will
consider what an integral with respect to dB

t

means, and we will also consider
the case when the function f depends not only on time but on the random
element !.

The first idea is to rewrite
Z

f(t)dB
t

=

Z
f(t)

dB

t

dt

dt

but as Brownian motion is almost surely nowhere di↵erentiable, we cannot write
dBt
dt

.
The second idea is to proceed as in the definition of the Lebesgue integral:

start with simple step functions and later extend the definition to more general
functions by the Itô Isometry.

Step 1: Consider simple functions

f(t) =
nX

i=1

a

i

�

(ti,ti+1]
(t)
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where �
A

is the indicator function of a set A satisfying

�

A

(x) =

(
1 x 2 A

0 x /2 A.

Observe that f takes a finite number n of values. By the theory of
Lebesgue integration, we know that the set of these simple functions is
dense in L

2([0,1)). We also know that the usual Riemann integral of
such a function f corresponds to the area under the graph of f , with

Z 1

0

f(t)dt =
X

i

a

i

(t
i+1

� t

i

)

Step 2: We now extend the method above to stochastic integral with respect to
Brownian motion:

Z
f(t)dB

t

=
X

a

i

(B
ti+1 �B

ti).

Remark 5.1. By the equation above, it follows that the integral
R
f(t)dB

t

is a random variable, since the B
ti are random variables. Since increments

of Brownian motion are independent and Gaussian, the integral
R
f(t)dB

t

is normally distributed with zero mean. What about its variance?

Lemma 5.2. (Itô Isometry for simple functions) For a simple function
f(t) =

P
i

a

i

�

(ti,ti+1]
(t), it holds that

E
"✓Z 1

0

f(t)dB
t

◆
2

#
=

Z 1

0

(f(t))2 dt.

Proof.

var

✓Z 1

0

f(t)dB
t

◆
= var

 
X

i

a

i

�
B

ti+1 �B

ti

�
!

=
nX

i=1

a

2

i

var
�
B

ti+1 �B

ti

�

=
nX

i=1

a

2

i

(t
i+1

� t

i

)

=
nX

i=1

a

2

i

Z 1

0

�

(ti,ti+1]
dt

=

Z
nX

i=1

a

2

i

�

(ti,ti+1]
dt

=

Z
(f(t))2 dt.

Therefore
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var

✓Z
f(t)dB

t

◆
= E

"✓Z
f(t)dB

t

◆
2

#
�

0

BB@E
Z

f(t)dB
t

�

| {z }
=0

1

CCA

2

= E
"✓Z

f(t)dB
t

◆
2

#
.

Step 3: Now we extend the definition of the integral to L

2([0,1)). The main
result is the following

Theorem 5.3. (Itô integral for L

2([0,1)) functions) The definition of
the Itô integral can be extended to elements f 2 L

2([0,1)) by setting
Z 1

0

f(t)dB
t

:= lim
n!1

Z 1

0

f

n

(t)dB
t

where the sequence (f
n

)
n2N is a sequence of a simple functions satisfying

f

n

! f in L

2([0,1)), i.e.

kf
n

� fk
L

2
([0,1))

=

✓Z 1

0

(f
n

� f)2 (t)dt

◆
1/2

�!
n!1 0.

By the Itô isometry, we can show that (
R
f

n

(t)dB
t

)
n2N is a Cauchy se-

quence in the weighted L

2 space

L

2(⌦,P) :=
�
F : ⌦ ! R : kF ||

L

2
(⌦,P) < 1 

of measurable functions F where

kFk2
L

2
(⌦,P) =

Z
|F |2(!) dP(!).

To show that the sequence (
R
f

n

(t)dB
t

)
n2N is a Cauchy sequence, let

(f
l

)
l2N be a sequence of functions converging to f in L

2([0,1)) and con-
sider for m,n 2 N

����
Z

f

n

(t)dB
t

�
Z

f

m

(t)dB
t

����
L

2
(⌦,P)

=

 
E
"✓Z

f

n

(t)dB
t

�
Z

f

m

(t)dB
t

◆
2

#!
1/2

=

 
E
"✓Z

f

n

(t)� f

m

(t)dB
t

◆
2

#!
1/2

=

✓Z
(f

n

(t)� f

m

(t))2 dt

◆
1/2

(Itô isometry)

= kf
n

� f

m

k
L

2
([0,1))

 kf
n

� fk
L

2
([0,1))

+ kf
m

� fk
L

2
([0,1))
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and using that kf
n

� fk
L

2
([0,1))

and kf
m

� fk
L

2
([0,1))

! 0 as m,n ! 1,
the result follows.

Since L

2(⌦,P) is complete, the limit exists and is in the same space.
Moreover, by the Itô isometry, the limit is independent of the sequence
(f

n

)
n2N used to approximate f in L

2([0,1)) (see [Dur96] for an example).

Example 5.4. Consider the random variable
R1
0

exp(�t)dB
t

. How is it
distributed? Using the Itô Isometry, the random variable is Gaussian with
mean zero and variance 1

2

=
R1
0

exp(�2t)dt.

Corollary 5.5. The Itô Isometry holds as well for f 2 L

2([0,1)), not
just simple functions.

Step 4: Now we consider functions f which depend both on the random element
! as well as time t. That is, we consider stochastic integrals of stochastic
processes f : [0,1)⇥ ⌦ ! R with the following properties:

(i) f is B⇥F-measurable, where B is the Borel sigma-algebra on [0,1)
and F is a given sigma-algebra on ⌦.

(ii) f(t,!) is adapted with respect to F
t

, where F
t

:= � (B
s

: s  t)

(iii) E
⇥R |f(t,!)|2dt⇤ < 1.

Consider simple stochastic processes of the form

f(t,!) =
nX

i=1

a

i

(!)�
(ti,ti+1]

(t).

Then Z
f(t,!)dB

t

=
nX

i=1

a

i

(!)
�
B

ti+1 �B

ti

�
.

Example 5.6. Fix n 2 N, fix a time step �t := 2�n and define the time
nodes t

i

:= i�t for i = 0, 1, 2, . . .. Let (B
t

)
t>0

be the standard Brownian
motion. Define the following processes on [0,1):

f

1

(t,!) =
X

i2N
B

ti(!)�[ti,ti+1)
(t)

f

2

(t,!) =
X

i2N
B

ti+1(!)�[ti,ti+1)
(t).

Now fix T > 0 and N such that T = t

N

= N�t = N2�n and compute the
expected values of the integrals of f

1

and f

2

over [0, T ]. By the independent
increments property of Brownian motion (or the martingale property of
Brownian motion), we have

E
"Z

T

0

f

1

(t,!)dB
t

#
=

N�1X

i=0

E
⇥
B

ti

�
B

ti+1 �B

ti

�⇤
= 0.
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Using the fact above with linearity of expectation, we also have

E
"Z

T

0

f

2

(t,!)dB
t

#
=

N�1X

i=0

E
⇥
B

ti+1

�
B

ti+1 �B

ti

�⇤� 0

=
N�1X

i=0

�
E
⇥
B

ti+1

�
B

ti+1 �B

ti

�⇤� E
⇥
B

ti

�
B

ti+1 �B

ti

�⇤�

=
N�1X

i=0

E
h�
B

ti+1 �B

ti

�
2

i

=
N�1X

i=0

t

i+1

� t

i

= T.

In the case of Riemann integration of deterministic integrals, letting n !
1 would lead to the result that both integrals above are equal. We see
that for stochastic integration, this is not the case; even if we let n ! 1,
the expectations of the Itô integrals would not be equal. This is because
the choice of endpoint of the interval matters in stochastic integration.
Choosing the left endpoint (i.e. choosing B

ti) for f1 and the right endpoint
(i.e. B

ti+1 for f

2

leads to di↵erent expectations. Note also that taking
the right endpoint in f

2

leads to f

2

not being adapted, since B

ti+1 is not
measurable with respect to F

t

for t < t

i+1

. Therefore, by property (ii)
above, we may not integrate f

2

with respect to dB

t

in the way we have just
described.

6 Day 6, 20.11.2012

6.1 The Itô Integral, continued

We extend the Itô integral to the case

I[f ](!) =

Z
t

0

f(s,!)dB
s

(!) ,

where B

t

is one-dimensional Brownian motion. One aim is to understand

dX

t

= b(t,X
t

)dt+ �(t,X
t

)dB
t

, X

0

= x

that is SDE shorthand for

X

t

= x+

Z
t

0

b(s,X
s

) ds+

Z
t

0

�(s,X
s

) dB
s

.

A second objective later on will be to analyze discretizations of SDEs, such as

X

n+1

�X

n

= b(t
n

, X

n

)�t+ �(t
n

, X

n

)�B

n

.

We begin with a couple of definitions.

Definition 6.1. We call k · kV the norm defined by

kfk2V = E
Z

t

s

|f(u, ·)|2du
�
=

Z

⌦

Z
t

s

|f(u,!)|2du dP(!) .
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Definition 6.2 (Cf. the considerations at the bottom of p. 21). Let V = V(s, t)
be the class of functions f : [0,1)⇥ ⌦ ! R with

(i) (t,!) 7! f(t,!) is B ⇥ F-measurable3

(ii) f(t, ·) is F
t

-adapted

(iii) kfkV < 1.

Definition 6.3. A simple function ' : [0,1)⇥⌦ ! R is a function of the form

'(t,!) =
X

j

e

j

(!)�
[tj ,tj+1)

(t)

where each e

j

is F
tj -measurable and {F

t

}
t�0

with F
t

= �(B
s

: s  t) is the
filtration generated by Brownian motion.

Definition 6.4. The Itô integral for a simple function ' is defined by

I['](!) =

Z
t

0

'(s,!)dB
s

(!) =
X

j

e

j

(!)(B
tj+1 �B

tj ).

Lemma 6.5. Itô Isometry: If '(t,!) is a bounded, simple function, then

E
"✓Z

t

s

'(u,!)dB
u

(!)

◆
2

#
= E

Z
t

s

|'(u,!)|2du
�
.

Proof. Define �B

j

:= B

tj+1 � B

tj . Then I['] =
P

j

e

j

�B

j

. By independence
of e

i

e

j

�B

i

from �B

j

when i 6= j, we have that

E [e
i

e

j

�B

i

�B

j

] =

(
0 i 6= j

E
⇥
e

2

j

⇤
(t

j+1

� t

j

) i = j.

Therefore,

E
"✓Z

t

s

'(u, ·)dB
u

◆
2

#
=
X

i,j

E [e
i

e

j

�B

i

�B

j

]

=
X

j

E
⇥
e

2

j

⇤
(t

j+1

� t

j

) = E
Z

t

s

'(u, ·)du
�
.

Now we will extend the Itô integral to V = V(s, t), by extending the Itô
integral to progressively larger classes of functions.

Step 1: Let g 2 V be a uniformly bounded function which is continuous for each
!. Then there exists a sequence of simple functions ('

n

)
n2N such that

k'
n

� gkV ! 0

as n ! 1.
3Here again: B = B([0,1)) is the �-algebra od Borel sets over [0,1).
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Proof. Choose '
n

(t,!) =
P

j

g(t
j

,!)�
[tj ,tj+1)

(t). Then '
n

! g in L

2([s, t])

for each ! 2 ⌦, and hence k'
n

� gk2V ! 0, i.e.,

E
Z

t

s

('
n

� g)2 du

�
=

Z

⌦

✓Z
t

s

('
n

� g)2 du

◆
dP ! 0

as n ! 1.

Step 2: Let h 2 V be bounded. Then there exists a bounded sequence of functions
(g

n

)
n2N ⇢ V such that each g

n

is continuous in t for each ! and for each
n 2 N, such that kg

n

� hkV ! 0.

Proof. Suppose that |h(t,!)|  M < 1. For each n, let  
n

be defined by

(i)  
n

(x) = 0 for x 2 (�1,� 1

n

] [ [0,1)

(ii)
R
R  n

(x)dx = 1.

Now define the functions g
n

: [0,1)⇥ ⌦ ! R by

g

n

(t,!) =

Z
t

0

 

n

(s� t)h(s,!)ds.

Then it holds that g
n

! h in L

2([s, t]), i.e., kg
n

�hk
L

2
([s,t])

! 0 as n ! 1.
As h is bounded, we can apply the bounded convergence theorem to obtain

E
Z

t

s

(g
n

� h)2 du

�
! 0

as n ! 1.

Remark 6.6. In the limit as n ! 1, the  
n

(x) become more sharply
peaked at x = 0—in other words, they approach a Dirac delta distribution:

h(t,!) =

Z 1

0

�(s� t)h(s,!)ds .

Step 3: Let f 2 V. Then there exists a sequence of functions (h
n

)
n2N ⇢ V such

that h
n

is bounded for each n 2 N and kh
n

� fkV ! 0 as n ! 1.

Proof. Define

h

n

(t,!) =

8
><

>:

�n f(t,!) < �n

f(t,!) �n  f(t,!)  n

n f(t,!) > n.

Then the assertion follows by the dominated convergence theorem.

By Steps 1-3, f 2 V can be approximated by sequences of simply functions
'

n

in the sense that
kf � '

n

kV ! 0 .
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Therefore we can define

I[f ](!) =

Z
t

s

f(u,!)dB
u

(!) = lim
n!1

Z
t

s

'

n

(u,!)dB
u

(!) ,

where by the Itô isometry, the limit exists in L

2(⌦,P) because
✓Z

'

n

(u,!)dB
u

(!)

◆

n2N

is a Cauchy sequence in L

2(⌦,P); see p. 21.

Definition 6.7. Let f 2 V = V(s, t). Then the Itô integral of f is defined by

lim
n!1

Z
t

s

'

n

(u,!)dB
u

(!)

where ('
n

)
n2N is a sequence of simple functions with '

n

! f in V, i.e.,

E
Z

t

s

(f(u,!)� '(u,!))2 du

�
! 0 as n ! 1.

Corollary 6.8. (Itô isometry) For all f 2 V = V(s, t), we have

E
"✓Z

t

s

f(u,!)dB
u

(!)

◆
2

#
= E

Z
t

s

|f(u,!)|2 du
�
.

Theorem 6.9. Let f, g 2 V(0, t) and 0  s  u  t. Then (a.s.):

(i) Z
t

s

f(⌧,!)dB
⌧

=

Z
u

s

f(⌧,!)dB
⌧

+

Z
t

u

f(⌧,!)dB
⌧

.

(ii) Z
t

s

(↵f + �gdB

u

= ↵

Z
t

s

fdB

u

+ �

Z
t

s

gdB

u

8↵,� 2 R

(iii)

E
Z

t

0

f(s,!)dB
s

�
= 0

(iv) Z
t

s

f(u,!)dB
u

is F
t

-measurable.

Proof. Exercise.

Example 6.10. Consider the linear SDE for constants A,B 2 R

dX

t

= AX

t

dt+BdW

t

, X

0

= x,
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which means

X

t

= x+A

Z
t

0

X

s

ds+B

Z
t

0

dW

s

.

One can show that the solution to the linear SDE can be expressed using the
variation-of-constants-formula

X

t

= e

At

x+

Z
t

0

e

A(t�s)

BdW

s

.

The solution (X
t

)
t>0

is a Gaussian process, so it is completely specified by its
mean and variance

E [X
t

] = e

At

x by property (iv) above

E
h
(X

t

� E [X
t

])2
i
= E

"✓Z
t

0

e

A(t�s)

BdWs

◆
2

#

= E
Z

t

0

⇣
e

A(t�s)

B

⌘
2

ds

�
by Itô isometry

=

Z
t

0

e

2A(t�s)

B

2

ds

=
B

2

2A

�
e

2At � 1
�

Remark 6.11. The main things to remember are that the approximation pro-
cedure for defining the Itô integral reduces to the Itô isometry for elementary
functions '

n

! f (convergence in V) and that the limiting integral I[f ] is in
L

2(⌦,P). Specifically, we have proved that I['
n

] ! I[f ] in L

2(⌦,P), i.e.,

E
⇥
(I['

n

]� I[f ])2
⇤
=

Z

⌦

(I['
n

](!)� I[f ](!))2 dP(!) ! 0

as n ! 1.

7 Day 7, 27.11.2012

7.1 The Itô Integral—recapitulation

The Itô integral for functions f 2 V ⇠= L

2(⌦⇥ [0, T ],P⌦ �) is defined by

I[f ](!) =

Z
T

0

f(!, s)dB
s

(!) = lim
n!1

X

j

e

n

j

⇣
B

t

n
j+1

�B

t

n
j

⌘
,

with convergence in L

2(⌦,P). Here the (en
j

)
n,j2N is a sequence of random vari-

ables that are measurable with respect to �(B
s

: s  t

n

j

), and

('
n

)
n2N , '

n

(!, t) =
X

j

e

n

j

(!)�
[t

n
j ,t

n
j+1)

(t)

is a sequence of simple functions such that k'
n

� fkV ! 0.
The Itô integral provides the solution to the stochastic di↵erential equation

dX

t

(!) = b(X
t

(!), t)dt+ �(X
t

(!), t)dB
t

(!) , X

0

= x . (12)
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Specifically, assuming that (X
t

)
t�0

is adapted to the filtration generated by B

t

,
i.e., X

t

is measurable with respect to �(B
s

: s  t), we have

X

t

= x+

Z
t

0

b(X
s

, s) ds+

Z
t

0

�(X
s

, s) dB
s

.

7.2 Functions of bounded (quadratic) variation

What we now need is a theory of di↵erentiation that is useful in solving equations
such as (12) and which can explain properties of the Itô integral, such as

Z
t

0

B

t

dB

t

=
1

2
B

2

t

� 1

2
t.

Exercise 7.1. Prove the above equation.

Definition 7.2. Let T > 0. A sequence (�
n

)
n2N of partitions of [0, T ], with

�
n

= {tn
0

, . . . , t

n

k

n} ⇢ [0, T ] , 0 = t

n

0

< t

n

1

< · · · < t

n

k

n = T

is called a refinement of partitions of [0, T ] if the sequence satisfies

�
n+1

� �
n

& |�
n

| := max
i

|tn
i

� t

n

i�1

| ! 0 as n ! 0.

Example 7.3. An example of a refinement of partitions is the sequence of
dyadic partitions. Let T = 1, and define

�
n

=

⇢
j

2n
: j = 0, 1, . . . , 2n � 1, 2n

�
.

Definition 7.4. A function f : [0, T ] ! R is of bounded variation (BV) if

sup
n2N

|f(tn
i

)� f(tn
i�1

)| < 1

for all refinements of partitions (�
n

)
n2N.

Definition 7.5. A function f : [0, T ] ! R is of quadratic variation (QV) if its
quadratic variation

hfi
t

:= sup
n

X

t

n
i t

|f(tn
i

)� f(tn
i�1

)|2 < 1.

is finite for every t 2 [0, T ] and over all refinements of partitions.

Remark 7.6. We make some remarks which we will not prove, with the excep-
tion of (iii).

(i) Continuously di↵erentiable functions are BV functions.

(ii) If one integrates against a BV function, the resulting Riemann-Stieltjes
integral is independent of the refinement of partitions.
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(iii) Continuous BV functions have zero QV:

0  hfi
t

= sup
n2N

X

t

n
i t

|f(tn
i

)� f(tn
i�1

)|2

= lim
n!1

X

t

n
i t

|f(tn
i

)� f(tn
i�1

)|2

 max
i

|f(tn
i

)� f(tn
i�1

)| lim
n!1

X

t

n
i t

|f(tn
i

)� f(tn
i�1

)|

 C lim
n!1 |f(tn

i

)� f(tn
i�1

)| (since f is a BV function)

= 0 (by continuity of f) .

(iv) The quadratic variation of Brownian motion at time t is equal to t:

hBi
t

= t.

Brownian motion is not of bounded variation.

(v) Given an interval [0, T ] for T > 0 and a function f : [0, T ] ! R of QV,
the quadratic variation hfi

t

is a BV function of time, which follows from
the fact that h·i is monotonic as a function of time.

Theorem 7.7 (Itô’s formula I). Let F 2 C

2,1(R, [0, T ]) and let X = B 2
C([0, T ]) be Brownian motion. Then

F (X
t

, t) = F (0, 0) +

Z
t

0

@F

@x

(X
s

, s) dX
s

+

Z
t

0

✓
1

2

@

2

@x

2

+
@

@s

◆
F (X

s

, s) ds .

Proof. For convenience, we will drop the time-dependence of F , so that F (x, s) =
F (x). By Taylor’s theorem,

F (X
t

n
i
)� F (X

t

n
i�1

) = F

0(X
t

n
i�1

)(X
t

n
i
�X

t

n
i�1

) +
1

2
F

00(⇠n
i

)(X
t

n
i
�X

t

n
i�1

)2

for a number ⇠n
i

2 (X
t

n
i
, X

t

n
i�1

). Then

F (X
t

)� F (X
0

) =
X

t

n
i t

F

0(X
t

n
i�1

)(X
t

n
i
�X

t

n
i�1

)

| {z }
In

+
1

2

X

t

n
i t

F

00(⇠n
i

)(X
t

n
i
�X

t

n
i�1

)2

| {z }
Qn

.

We consider the two sums separately. As for the first sum, we observe that I
n

is a discrete version of the Itô integral, and therefore
����In �

Z
t

0

@F

@x

(X
s

, s) dX
s

����
2

L

2
(⌦,P)

! 0

as n ! 1. Using (v) from the preceding remark, we know that the quadratic
variation of (X

t

)
t2[0,T ]

is itself a BV function of time. Therefore Q

n

converges
to the standard Riemann-Stieltjes integral,

1

2

Z
t

0

F

00(X
s

) dhXi
s

=
1

2

Z
t

0

F

00(X
s

) ds ,

where, again, convergence is in L

2(⌦,P).
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Corollary 7.8 (Itô’s Formula II). Let B = (B
t

)
t�0

be d-dimensional Brownian
motion and let X = (X

t

)
t�0

be the n-dimensional solution to the Itô stochastic
di↵erential equation

dX

t

= b(X
t

, t)dt+ �(X
t

, t)dB
t

,

where b : Rn ⇥ R ! Rn, � : Rn ⇥ R ! Rn⇥d. Let F 2 C

2,1(Rn

, [0,1)). Then
Y

t

:= F (X
t

, t) solves the Itô equation

dY

t

= r
x

F (X
t

, t) · dX
t

+
@F

@t

(X
t

, t)dt
| {z }

BV part (by chain rule)

+
1

2
dX

t

·r2

x

F (X
t

, t)dX
t

| {z }
QV part

=

 
@F

@t

+
nX

i=1

@F

@x

i

b

i

+
1

2

�
��

> : r2

x

F

�
!
(X

t

, t) dt+
�
�

>r
x

F

�
(X

t

, t) · dB
t

where A : B = (AT

B) denotes the matrix inner product, and we have obtained
the last equation by substituting dX

t

= b(X
t

, t)dt+ �(X
t

, t)dB
t

, using the rules

dtdt = dtdB

i

t

= dB

j

t

dt = 0 and dB

i

t

dB

j

t

= �

ij

dt (i, j = 1, . . . , d) ,

where B

i

t

denotes the i-th component of B
t

.

Remark 7.9. The matrix family a(·, ·) := ��

> : Rn ⇥R ! Rn⇥n is sometimes
called the di↵usion matrix.

Remark 7.10. Note that, for functions that have a quadratic variation, Itô’s
formula is what is chain rule for functions of bounded variation. Dropping the
dependence on (X

t

, t) for the moment, one may rewrite the last equation as

dY

t

=

0

@@F
@t

+
nX

i=1

@F

@x

i

b

i

+
1

2

nX

i,j=1

a

ij

@

2

F

@x

i

@x

j

1

A
dt+

dX

i=1

0

@
nX

j=1

�

ij

@F

@x

j

1

A
dB

i

t

.

Historical remarks

Itô’s original work was published in 1951.4 However it was recently revealed that
in 1940 Wolfgang Döblin, brother of novelist Alfred Döblin, French-German
mathematician and student of Maurice Fréchet and Paul Lévy, sent a sealed
letter to the Académie Française, while he was on the German front with the
French army (as a telephone operator). Döblin committed suicide before he
was captured by the German troops and burned all his mathematical notes.
According to Döblin’s last will, the letter to the Académie Française was opened
in the year 2000 and found to contain a proof of Itô’s lemma.5

7.3 Geometric Brownian motion

Consider the Geometric Brownian motion S = (S
t

)
t�0

that is the solution of
the Itô stochastic di↵erential equation (SDE)

dS

t

= µS

t

dt+ �S

t

dB

t

, S

0

> 0.

4Kiyoshi Itô, 1915–2008, Japanese Mathematician; the famous lemma appeared in [K. Itô,
On stochastic di↵erential equations, Memoirs AMS 4, 1–51, 1951].

5For a summary of Döblin’s work, see [B. Bru and M. Yor, Comments on the life and
mathematical legacy of Wolfgang Doeblin, Finance Stochast. 6, 4–47, 2002]
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Figure 7: Typical realization of Geometric Brownian Motion (S
t

)
t2[0,1]

for µ = 2
and � = 1. The red dashed line shows the mean E[S

t

].

We claim that the solution to the SDE is

S

t

= S

0

exp

✓
µ� �

2

2

◆
t+ �B

t

�
.

This can be seen as follows: using Itô’s formula for F (x) = log x, we find

Y

t

= logS
t

) dY

t

=
dS

t

S

t

� �

2

2

S

2

t

S

2

t

dt

=

✓
µ� �

2

2

◆
dt+ �dB

t

and therefore

Y

t

= Y

0

+

Z
t

0

✓
µ� �

2

2

◆
dt+ �

Z
t

0

dB

t

= Y

0

+

✓
µ� �

2

2

◆
t+ �B

t

which proves that S
t

follows the log-normal distribution with mean
⇣
µ� �

2

2

⌘
t

and variance �2. Moreover,

E [S
t

] = exp (µt) .

Remark 7.11. The geometric Brownian motion is sometimes used to model
the growth of one’s wealth subject to some positive interest rate µ > 0 and ran-
dom fluctuations due to market conditions, represented by the volatility-modified
Brownian motion term �B

t

. Good to know that E[S
t

] = exp (µt).
It is also known, however, that the Brownian motion satisfies the Law of the
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Iterated Logarithm (see, e.g., [Øks03, Thm. 5.1.2])

lim sup
t!1

B

tp
2t log log t

= +1

lim inf
t!1

B

tp
2t log log t

= �1 ,

which states that Brownian grows sublinearly. Since

S

t

= S

0

exp

✓
µ� �

2

2

◆
t+ �B

t

�

it follows that depending on di↵erent values of µ and �, the wealth process
(S

t

)
t�0

is dominated by the linear drift term. Indeed S, can exhibit rather
di↵erent behaviours in the limit as t ! 1, depending on the values of µ and �:

(a) If µ <

�

2

2

, then S

t

! 0 as t ! 1.

(b) If µ = �

2

2

, then lim sup
t!1 S

t

= 1, lim inf
t!1 S

t

= 0.

(c) If µ >

�

2

2

, then S

t

% 1 as t ! 1.

(All the statements above hold P-almost surely.) The mind-blowing aspect of
geometric Brownian motion is the seemingly contradictory property that, even
though the expected value grows exponentially with time for every volatility value
�, the process will hit zero with probability 1 whenever the volatility is su�ciently
large, i.e. when � >

p
2µ. That is, even though the expected wealth grows

exponentially (and thus never hits zero), for P-almost all !, all the wealth will
vanish due to fluctuations in the long time limit, i.e., every single market player
goes broke with probability one. Think about it!

8 Day 8, 04.12.2012

8.1 Short reminder: Itô’s Formula

Given F 2 C

2(Rn) and an Itô SDE

dX

t

= b(X
t

, t)dt+ �(X
t

, t)dB
t

,

the process (Y
t

)
t�0

, Y
t

:= F (X
t

) solves the Itô SDE

dY

t

= rF (X
t

) · dX
t

+
1

2
dX

t

·r2

F (X
t

)dX
t

=

✓
rF · b+ 1

2
��

> : r2

F

◆
dt+

�
�

>rF

� · dB
t

where u ·v = u

>
v denotes the usual inner product between vectors and A : B =

tr(A>
B) is the inner product between matrices. Furthermore, in the step from

the first to the second line, we have used the rule that

dtdt = dtdB

i

t

= dB

i

t

dt = 0 dB

i

t

dB

j

t

= �

ij

dt , i, j = 1, . . . , n .
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If we define the second-order di↵erential operator (the infinitesimal generator
of the stochastic “flow” X

t

that will be introduced later on)

L' =
1

2
��

> : r2

'+ b ·r' ,

Itô’s formula may be rewritten as

dY

t

= (LF ) (X
t

, t)dt+
�
�

>rF

�
(X

t

, t) · dB
t

.

Remark 8.1. The fact that the usual chain does not apply for Itô processes
has to do with the definition of the corresponding stochastic integral. We shall
briefly comment on what makes Itô integral special.

(i) The Martingale Representation Theorem states that every F
t

-martingale
(X

t

)
t�0

(i.e., X
t

is adapted to the filtration generated by B

t

and satisfies
X

s

= E [X
t

|F
s

] ) can be written as the integral

X

t

= X

0

+

Z
t

0

�(!, s)dB
s

for a function � 2 V(0, t), that is uniquely determined. Conversely, every
Itô integral of the form Z

t

0

�

s

dB

s

is a martingale with respect to (F
t

)
t�0

(ii) The Stratonovich integral is another stochastic integral, distinct from the
Itô integral, that is based on the midpoint rule, i.e.,

Z
 (!, s) � dB

s

= lim
n!1

X

j

 

⇣
!, t

j+

1
2

⌘ �
B

tj+1 �B

tj

�

where we emphasize the di↵erent notation using the “�” symbol and where

t

j+

1
2
:=

t

j

+ t

j+1

2
.

The Stratonovich integral has the property that

E
Z

 

s

� dB
s

�
6= 0 ,

hence the Stratonovich integral is not a martingale, unlike the Itô integral.
Furthermore, the thus defined integral does not satisfy the Itô Isometry.
On the other hand, the usual chain rule applies.

(iii) The Stratonovich integral is used for integrating Stratonovich SDEs

dX

t

= b(X
t

, t)dt+ �(X
t

, t) � dB
t

,

where, again, the “�” indicates that the SDE has to be interpreted in the
Stratonovich sense (i.e., integrated using the Stratonovich integral). One
can also convert Stratonovich SDEs to Itô SDEs using the conversion rule

dX

t

= b(X
t

, t)dt+ �(X
t

, t) � dB
t

=

✓
b+

1

2
�r�

◆
(X

t

, t)dt+ �(X
t

, t)dB
t

.
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8.2 Stochastic Di↵erential Equations (Itô SDEs)

We now want to find possible solutions (X
t

)
t�0

⇢ Rn for Itô SDEs of the form

dX

t

= b(X
t

, t)dt+ �(X
t

, t)dB
t

. (13)

where b : Rn ⇥ R ! Rn and � : Rn ⇥ R ! Rn⇥d are measurable functions.

Definition 8.2 (Strong solution). Let T > 0. A process (X
t

)
t2[0,T ]

is called
a strong solution of (13) if the map t 7! X

t

is almost surely continuous and
adapted to the filtration generated by the Brownian motion (B

t

)
t2[0,T ]

and if it
holds for P-almost all ! (i.e., if it holds P-almost surely) that

X

t

(!) = X

0

(!) +

Z
t

0

b(X
s

(!), s)ds+

Z
t

0

�(X
s

,!)dB
s

(!) (! fixed) .

Definition 8.3 (Uniqueness). The solution of (13) is called unique or pathwise
unique if

P(X
0

= X̃

0

) ) P(X
t

= X̃

t

) 8t 2 [0, T ]

for any two solutions (X
t

)
t2[0,T ]

and (X̃
t

)
t2[0,T ]

of (13).

Theorem 8.4 (Existence and uniqueness). Let T > 0 and b,� in (13) satisfy

(i) (Global Lipschitz condition): 8x, y 2 Rn, 8t 2 [0, T ],

|b(x, t)� b(y, t)|+ |�(x, t)� �(y, t)|  L|x� y|

for some constant 0 < L < 1.6

(ii) (Sublinear growth condition): 8x,2 Rn and 8t 2 [0, T ],

|b(x, t)|+ |�(x, t)|  G(1 + |x|)

for some 0 < G < 1.

Given that the above conditions hold, if we have E
⇥
X

2

0

⇤
< 1, then (13) has a

pathwise unique, strong solution for any T > 0.

Proof. See [Øks03, Thm 5.2.1]. The main elements of the proof of the above
theorem are the Itô Isometry and a Picard-Lindelöf-like fixed-point iteration,
just as in case of ordinary di↵erential equations.

Example 8.5. We now consider some examples which use Itô’s formula.

(i) (Geometric Brownian motion): the Itô SDE in this example is

dS

t

= µS

t

dt+ �S

t

dB

t

, S

0

> 0

and the solution to this SDE is

S

t

= S

0

exp

✓
µ� �

2

2

◆
t+ �B

t

�

6Here the norm on the matrix terms �(·, ·) is arbitrary and may be taken to be, e.g., the
Frobenius norm |�| = (

P
i,j |�ij |2)1/2.
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Figure 8: Typical realization of the logistic growth model with r = 0.5, C = 3
and � = 0.1; for comparison, the dashed green curve shows the deterministic
model with � = 0; the red straight line shows the capacity bound C.

(ii) (Ornstein-Uhlenbeck process): the OU process is a Gaussian process whose
evolution is given by

dX

t

= AX

t

dt+BdW

t

, X

0

= x

0

for A 2 Rn⇥n, B 2 Rn⇥d (i.e., W
t

is d-dimensional Brownian motion).
The solution to the above SDE is

X

t

= e

At

x

0

+

Z
t

0

e

A(t�s)

B dW

s

(iii) (Brownian Bridge): the Brownian bridge (BB

t

)
t2[0,1]

is a Gaussian pro-
cess with the property BB

0

= BB

1

= 0. The associated SDE is

dBB

t

=
1�BB

t

1� t

dt+ dB

t

, BB

0

= 0.

The solution to the above SDE is

BB

t

= (1� t)

Z
t

0

dB

s

1� s

.

The proof is left as an exercise.

(iv) (Logistic growth model): Consider the ODE

dz

dt

= rz (C � z) , z(0) > 0

that describes logistic growth of a population where r > 0 is the (initial)
growth rate and C > 0 is the capacity bound. If we add random perturba-
tions we obtain the Itô SDE

dZ

t

= rZ

t

(C � Z

t

)dt+ �Z

t

dB

t

, Z

0

> 0.

34



0 5000 10000
−1.5

−1

−0.5

0

0.5

1

1.5

time

x

−1 0 1
0

0.5

1

1.5

2

2.5

x

V
, 

h
is

to
g

ra
m

Figure 9: Typical realization of (14) with a bistable potential V ; the solution
has been computed using the Euler method (see the next section).

which describes logistic growth in a random environment (see Figure 8).
This is an interesting example because the drift coe�cient is not globally
Lipschitz—even worse, the drift term can become unbounded. Despite this,
one can obtain an analytic solution to the SDE above, given by

Ẑ

t

=
exp

h⇣
rC � �

2

2

⌘
t+ �B

t

i

Ẑ

�1

0

+
R
t

0

exp
⇥�
rC � �

2

2

�
s+ �B

s

⇤
ds

.

8.3 Central issues for numerical methods for SDEs

We now consider some key properties which we shall use in evaluating the quality
of a numerical method for solving Itô SDEs of the form

dX

t

= �rV (X
t

)dt+
p
2✏dB

t

(14)

with a smooth function V : R ! R (13) that will not meet the requirements of
the existence and uniqueness theorem in general.

(i) There are various choices for stable numerical schemes for solving equa-
tions like (14). As we will see below, one such choice is

X̃

n+1

� X̃

n

= ��tr(X̃
n

) +
p
2✏�t ⇠

n+1

,

where �t > 0 and the ⇠
n

are suitable i.i.d. random variables, e.g., stan-
dard normal or uniform on the set {�1, 1}, such that X̃

n

⇡ X(t
n

) on a
su�ciently fine grid 0 = t

0

< t

1

< t

3

< . . . with �t = t

n+1

� t

n

.

(ii) The numerical scheme under (i) can be shown to yield an approximation
to the continuous SDE on any finite time interval, but diverges when n !
1. On the other hand, we may be interested in the limiting behaviour,
specifically in the stationary distribution of the process (if it exists). In our
case, (an under certain technical assumption on V ), the process satisfies

(P �X�1

t

)(A) !
Z

A

e

�V/✏

dx

35



as t ! 1 and for all Borel sets A ⇢ R (assuming that the integral on
the right hand side is properly normalized). For the continuous process
convergence of the distribution can be shown to hold in L

1, but it may be
very slow if ✏ in (14) is small. For the discrete approximation this question
of convergence does not have an easy answer, for the standard numerical
schemes are not asymptotically stable and the numerical discretization
introduces a bias in the stationary distribution (see Figure 9).

(iii) Can we compute functionals of paths of X
t

? For example, can we compute
quantities, such as

E [�(X
T

)] , E
"Z

T

0

 (X
t

, t)dt

#

for bounded continuous functions �,  and T > 0, or can we compute

E[⌧ |X
0

= x]

with ⌧ being some random stopping time (e.g., a first hitting time of a
set E ⇢ R). Questions dealing with such functionals, but also the long-
term stability issue under (ii) will lead us to Markov Chain Monte-Carlo
(MCMC) methods for PDEs and the celebrated Feynman-Kac formula.

9 Day 9, 11.12.2012

9.1 Stochastic Euler Method

We motivate the ideas in this method by considering the deterministic initial
value problem

dx

dt

= b(x, t) , x(0) = x

0

,

for t 2 [0, T ]. The initial value problem has the solution

x(t) = x

0

+

Z
t

0

b(x(s), s)ds , t 2 [0, T ]

and we can approximate the true solution, employing a suitable quadrature rule
for the integral, e.g., the “rectangle rule”:

x(t
n+1

) = x(t
n

) +

Z
tn+1

tn

b(x(s), s)ds

⇡ x(t
n

) +

Z
tn+1

tn

b(x(t
n

), t
n

)ds

= x(t
n

) + b(x(t
n

), t
n

) (t
n+1

� t

n

) .

Given a su�ciently fine grid of time nodes 0 = t

0

< t

1

< . . . < t

N

= T with
fixed time step �t = t

n+1

� t

n

, we recognize the forward Euler method

x

n+1

= x

n

+�tb(x
n

, t

n

) .

The discretization error induced by the Euler scheme can be shown to satisfy

sup
n=1,...,N

|x(t
n

)� x

n

|  C�t.

for a 0 < C < 1 that is independent of �t.
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9.2 Simple quadrature rule for the Itô integral

Now let (X
t

)
t2[0,T ]

solve the Itô SDE

dX

t

= b(X
t

, t)dt+ �(X
t

, t)dB
t

, X

0

= x

with b : Rn ⇥ R ! Rn and � : Rn ⇥ R ! Rn⇥m for (B
t

)
t>0

a m-dimensional
Brownian motion. We wish to approximate (X

t

)
t>0

on the uniform grid

{0 = t

0

< t

1

< . . . < t

N

= T} , �t = t

n+1

� t

n

.

The “rectangle rule” for the solution between [t
n

, t

n+1

] ⇢ [0, T ] is

X

tn+1 = X

tn +

Z
tn+1

tn

b(X
s

, s)ds+

Z
tn+1

tn

�(X
s

, s)dB
s

⇡ X

tn +

Z
tn+1

tn

b(X
tn , tn)ds+

Z
tn+1

tn

�(X
tn , tn)dBs

= X

tn +�tb(X
tn , tn) +

�
B

tn+1 �B

tn

�
| {z }
=:�Bn⇠N(0,�t)

�(X
tn , tn).

Definition 9.1. (Euler-Maruyama scheme): For n = 0, . . . , N � 1, the Euler-
Maruyama scheme or Euler’s method gives the n-th iterate as

X̃

n+1

= X̃

n

+�tb(X̃
n

, t

n

) + �(X̃
n

, t

n

)�B

n

, X̃

0

= x

Remark 9.2. A few remarks are in order.

(i) Euler’s method is consistent with the definition of the Itô integral, in that
is evaluates the integrand at the left endpoint of the interval.

(ii) The Euler method gives the values of the numerical path at the time nodes.
A numerical path is obtained by linear interpolation: for t 2 [t

n

, t

n+1

],

X̃

t

(!) = X̃

n

(!) +
(t� t

n

)

�t

⇣
X̃

n+1

(!)� X̃

n

(!)
⌘

= X̃

n

+ (t� t

n

) b(X̃
n

, t

n

) +
t� t

n

�t

�(X̃
n

, t

n

)
�
B

tn+1 �B

tn

�
.

Note that X̃
t

, t  t

n+1

depends on B

tn+1 , i.e., the interpolant X̃
t

is not
non-anticipating.

(iii) Sometimes one wishes to refine the partition for a specific realization, i.e.
using the same path !. For example, by halving the time step from from
�t to �t/2, one obtains new grid points

t

n+

1
2
= t

n

+
�t

2

The values of the refined Brownian motion can be computed by the rule

B

tn+
1
2
(!) =

1

2

⇥
B

tn(!) +B

tn+1(!)
⇤
+

1

2

p
�t ⇠

n

(!)

where the ⇠
n

⇠ N(0, 1) are i.i.d. standard normal random variables.
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9.3 Convergence of Euler’s method

We can guess that X̃ ⇡ X(t
n

), but in which sense?

Example 9.3. Let X
t

= B

t

and Y

t

= �B

t

; then X

t

⇠ Y

t

(that is, (X
t

)
t>0

and
(Y

t

)
t>0

have the same distribution) but |X
t

� Y

t

| = 2|B
t

| is unbounded for all t.
Hence pathwise comparisons may not be very informative.

Definition 9.4. (Strong convergence): Let X
tn denotes the value of the true

solution (X
t

)
t2[0,T ]

of our SDE at the time t

n

. A numerical scheme (X̃
n

)
n

=

(X̃�t

n

)
n=0,...,N�1

is called strongly convergent of order � > 0 if

max
n=0,...,N�1

E[|X̃
n

�X

tn |]  C�t

�

where 0 < C < 1 is independent of �t but can depend on the length T = N�t

of the time interval.

Definition 9.5. (Weak convergence): A numerical scheme (X̃
n

)
n

is called
weakly convergent of order � > 0 if

max
n=0,...,N�1

���E[f(X̃
n

)]� E[f(X
tn)]
���  D�t

�

for all functions f in a suitably chosen class of functions (e.g. the space of
continuous, bounded functions C

b

(Rn, or the space of polynomials of degree k).
The constant D is independent of �t, but may depend function being considered.

Remark 9.6. A mnemonic for the di↵erence between strong and weak con-
vergence is that strong convergence is about the mean of the error, while weak
convergence is about the error of the mean.

Lemma 9.7. Let f be globally Lipschitz. Then strong convergence implies weak
convergence. The converse does not hold

Proof. Since f is globally Lipschitz, 9 0 < L < 1 such that

|f(x)� f(y)|  L|x� y| 8x, y 2 Rn

.

Then
���E[f(X̃

n

)]� E[f(X
tn)]
��� =

���E[f(X̃
n

)� f(X
tn)]
���

 E[|f(X̃
n

)� f(X
tn)|]

 LE[|X̃
n

�X

tn |].

Now consider the converse statement. Let X̃

n

= �X

tn , with E[X̃
n

] = 0 and
E[|X̃

n

|] 6= 0. Then
|E[X̃

n

� E[X
tn ]| = |0� 0| = 0 ,

but
E[|X̃

n

�X

tn |] = 2E[|X̃
n

|] 6= 0 ,

which concludes the proof.

The next theorem states that Euler’s method is strongly (and hence weakly)
convergent.
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Theorem 9.8. Let T > 0 and b,� in (13) satisfy

(i) (Global Lipschitz condition): 8x, y 2 Rn, 8t 2 [0, T ],

|b(x, t)� b(y, t)|+ |�(x, t)� �(y, t)|  L|x� y|

for some constant 0 < L < 1.

(ii) (Growth condition): 8x,2 Rn and 8t 2 [0, T ],

|b(x, t)|2 + |�(x, t)|2  G(1 + |x|2)

for some 0 < G < 1.

Then Euler’s method is strongly convergent of order � = 1/2 and weakly con-
vergent of order � = 1.

The proof is essentially based on the integral version of Gronwall’s lemma
(as is common when Lipschitz conditions are involved):

Lemma 9.9 (Gronwall Lemma). Let y : [0, T ] ! R be non-negative and inte-
grable such that

y(t)  A+B

Z
t

0

y(s) ds , 0  t  T ,

for some constants A,B > 0. Then

y(t)  Ae

Bt

, 0  t  T .

Now we can prove that the Euler-Maruyama scheme convergences.

Proof of Theorem 9.8. We will show only strong convergence and leave the weak
convergence part as an exercise. Without loss of generality, we assume that
b(x, t) = b(x) and �(x, t) = �(x) are independent of t and that x 2 R is scalar—
this will greatly simplify the notation. Since L

2(⌦, P ) ⇢ L

1(⌦, P ), i.e.,

E[|X̃
n

�X

tn |] 
q

E[|X̃
n

�X

tn |2] ,

it su�ces to prove that

E[|X̃
n

�X

tn |2]  C

2�t

for su�ciently small �t.
Now let ⌧ 2 [0, T ) and define n

⌧

2 N by ⌧ 2 [t
n⌧ , tn⌧+1

) with t

k

= k�t.
Further let X̄

⌧

= X̃

n⌧ be the piecewise constant interpolant of the time-discrete
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Markov chain X̃

0

, X̃

1

, X̃

2

, . . .. Then

X̄

⌧

�X

⌧

= X̃

n⌧ �
✓
x+

Z
⌧

0

b(X
s

) ds+

Z
⌧

0

�(X
s

) dB
s

◆

=
n⌧�1X

i=0

(X̃
i+1

� X̃

i

)�
Z

⌧

0

b(X
s

) ds�
Z

⌧

0

�(X
s

) dB
s

=
n⌧�1X

i=0

(b(X̃
i

)�t+ �(X̃
i

)�B

i+1

)�
Z

⌧

0

b(X
s

) ds�
Z

⌧

0

�(X
s

) dB
s

=

Z
tn⌧

0

b(X̄
s

) ds+

Z
tn⌧

0

�(X̄
s

) dB
s

�
Z

⌧

0

b(X
s

) ds�
Z

⌧

0

�(X
s

) dB
s

=

Z
tn⌧

0

(b(X̄
s

)� b(X
s

)) ds+

Z
tn⌧

0

(�(X̄
s

)� �(X
s

)) dB
s

| {z }
discretization error

�
 Z

⌧

tn⌧

b(X
s

) ds+

Z
⌧

tn⌧

�(X
s

) dB
s

!

| {z }
interpolation error

Squaring both sides of the equality and taking the expectation, it follows with
the inequality (a+ b+ c+ d)2  4(a2 + b

2 + c

2 + d

2),

E[|X̄
⌧

�X

⌧

|2]  4E
"✓Z

tn⌧

0

(b(X̄
s

)� b(X
s

)) ds

◆
2

#

+ 4E
"✓Z

tn⌧

0

(�(X̄
s

)� �(X
s

)) dB
s

◆
2

#

+ 4E

2

4
 Z

⌧

tn⌧

b(X
s

) ds

!
2

3

5+ 4E

2

4
 Z

⌧

tn⌧

�(X
s

) dB
s

!
2

3

5

We will now estimate the right hand side of the inequality term by term, using
Lipschitz and growth conditions:

1. Noting the inner Riemann integral can be interpreted as a scalar product
between the functions g(s) = 1 and f(s) = b(X̄

s

)� b(X
s

), we find

E
"✓Z

tn⌧

0

(b(X̄
s

)� b(X
s

)) ds

◆
2

#
 t

n⌧

Z
tn⌧

0

E[|b(X̄
s

)� b(X
s

)|2] ds
| {z }

Cauchy-Schwarz & Fubini

 TL

2

Z
tn⌧

0

E[|X̄
s

�X

s

|2] ds
| {z }

Lipschitz bound

.
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2. For the stochastic integral, the Itô isometry implies

E
"✓Z

tn⌧

0

(�(X̄
s

)� �(X
s

)) dB
s

◆
2

#
=

Z
tn⌧

0

E[|�(X̄
s

)� �(X
s

)|2] ds
| {z }

Itô isometry

 L

2

Z
tn⌧

0

E[|X̄
s

�X

s

|2] ds
| {z }

Lipschitz bound

.

3. For the interpolation error coming from the drift, we have

E

2

4
 Z

⌧

tn⌧

b(X
s

) ds

!
2

3

5 (⌧ � t

n⌧ )

Z
⌧

tn⌧

E[|b(X
s

)|2] ds
| {z }

Cauchy-Schwarz & Fubini

 �tG

Z
⌧

tn⌧

(1 + E[|X
s

|2]) ds
| {z }

sublinear growth

 M

1

(�t)2 ,

for a constant 0 < M

1

< 1. In the last step we have used that E[|X
s

|2]
is finite by the assumptions on the coe�cients b and �.

4. Finally, using the Itô isometry again, we can bound the remaining stochas-
tic integral by

E

2

4
 Z

⌧

tn⌧

�(X
s

) dB
s

!
2

3

5=

Z
⌧

tn⌧

E[|�(X
s

)|2] ds
| {z }

Itô isometry

 G

Z
⌧

tn⌧

(1 + E[|X
s

|2]) ds
| {z }

sublinear growth

 M

2

�t| {z }
E[|Xs|2]<1

,

for a constant 0 < M

2

< 1.

Setting y(t) = E[|X̄
t

� X

t

|2], the assertion follows from Gronwall’s lemma
with A = M�t for a M > (M

1

�t+M

2

) and B = L

2(1 + T ).

Remark 9.10. Note that the (strong) error bound for Euler’s method grows
exponentially with T , hence becomes essentially of order one if T = O(� log�t).

Remark 9.11. We shall briefly comment on some implementation issues.

(i) The standard implementation of Euler’s method is

X̃

n+1

= X̃

n

+�tb(X̃
n

, t

n

) +
p
�t�(X̃

n

, t

n

)⇠
n+1

where the ⇠
n

are standard normal, i.i.d. random variables.
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(ii) The simplified Euler method uses i.i.d. ⇠0
n

⇠ U({±1}) random variables,
i.e. P (⇠0

n

= 1) = P (⇠0
n

= �1) = 1/2. The advantage of the simplified Eu-
ler scheme is that it is much faster to generate U({±1}) random variables
than N(0, 1) random variables. The disadvantage of the simplified Euler
scheme is that it gives only weak convergence.

Exercise 9.12. Show that the simplified Euler method is weakly convergent.
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