
Lecture notes for Numerik IVc - Numerics for

Stochastic Processes, Wintersemester 2012/2013.

Instructor: Prof. Carsten Hartmann

Scribe: H. Lie

Course outline

1. Probability theory

(a) Some basics: stochastic processes, conditional probabilities and ex-
pectations, Markov chains

References: [MS05,Kle06]

2. Stochastic differential equations

(a) Brownian motion: properties of the paths, Strong Markov Property

References: [MS05,Øks03,Arn73]

(b) Stochastic integrals: Itô integrals, Itô calculus, Itô isometry

References: [MS05,Øks03,Arn73]

(c) SDEs: existence and uniqueness of solutions, numerical discretisa-
tion, applications from physics, biolopgy and finance

References: [Øks03,Arn73,KP92]

(d) Misc: Kolmogorov forward and backward PDEs, infinitesimal gen-
erators, semigroup theory, stopping times, invariant distributions,
Markov Chain Monte Carlo methods for PDEs and SDEs

References: [Øks03,Arn73,KP92]

3. Filtering theory (if time permits)

(a) Linear filtering: conditional expectation, best approximation, Kalman-
Bucy filter for SDEs

Reference: [Jaz07,Øks03]

4. Approximation of stochastic processes

(a) Spectral theory of Markov chains: infinitesimal generator, metasta-
bility, aggregation of Markov chains

References: [HM05,Sar11]

(b) Markov jump processes: applications from biology, physiocs and fi-
nance, Markov decision processes, control theory

References: [GHL09]
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Figure 1: Simulation of a butane molecule and its approximation by a 3-state
Markov chain (states in blue, green and yellow; solvent molecules not shown).

1 Day 1, 16.10.2012

1.1 Different levels of modelling

1.1.1 Time-discrete Markov chains

Time index set I is discrete, e.g. I ⊆ N and state space S is countable or finite,
e.g. S = {s1, s2, s3} (see Figure 1). Key objects are transition probabilities.
For a state space S = {1, . . . , n}, the transition probabilities pij satisfy

pij = P (Xt+1 = j | Xt = i)

and yield a row-stochastic matrix P = (pij)i,j∈S .

1.1.2 Markov jump processes

These are time-continuous, discrete state-space Markov chains. Time index set
I ⊆ R+, S discrete. For a fixed time step h > 0, the transition probabilities are
given by (see Figure 2)

P (Xt+h = sj |Xt = si) = h`ij + o(h)

where L = (`ij)i,j∈S and Ph are matrices satisfying Ph = exp (hL).
Note: the matrix L is row sum zero, i.e.

∑
j `ij = 0. The waiting times for

the Markov chain in any state si are exponentially distributed in the sense that

P (Xt+s = si, s ∈ [0, τ) |Xt = si) = exp (`iiτ)
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Figure 2: Simulation of butane: typical time series of the central dihedral angle
(blue: metastable diffusion process, red: Markov jump process)

and the ‘average waiting time’ is −`ii (by definition of the exponential distribu-
tion).

Note: the spectrum of the matrix Ph is contained within the unit disk, i.e.
for every eigenvalue λ of Ph, |λ| ≤ 1. This property is a consequence of Ph being
row-stochastic, i.e. that

∑
j Ph,ij = 1. Since Ph = exp(hL) it follows that

σ(Ph) ⊂ D :=
{
x ∈ R2 | |x| ≤ 1

}
⇔ σ(L) ⊂ C− = {y ∈ C |Re(y) ≤ 0}

Example 1.1. Suppose one has a reversible reaction in which one has a large
collection of N molecules of the same substance. The molecules can be either
in state A or state B and the molecules can change between the two states. Let
k+ denote the rate of the reaction in which molecules change from state A to B
and let k− denote the rate at which molecules change from state B to A.

For t > 0, consider the quantity

µAi (t) := P (number of molecules in state A at time t is i)

where i = {0, . . . , N}. One can define quantities µBi (t) in a similar way, and
one can construct balance laws for these quantities, e.g.

dµAi (t)

dt
= k+µAi+1(t) + k−µAi−1(t)− (k+ + k−)µAi (t).

The above balance law can be written in vector notation using a tridiagonal
matrix L. By adding an initial condition one can obtain an initial value problem

dµA(t)

dt
= L>µA(t), µA(0) = µ0.

The solution of the initial value problem above is

µA(t) = µ0 exp
(
tL>

)
.
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1.1.3 Stochastic differential equations (SDEs)

These are time-continuous, continuous state space Markov chains. SDEs may
be considered to be ordinary differential equations (ODEs) with an additional
noise term (cf. Figure 2). Let b : Rn → Rn be a smooth vector field and let x(t)
be a deterministic dynamical system governed by the vector field b(·). Then
x(t) evolves according to

dx

dt
= b(x), x(0) = x0. (1)

Now let (Bt)t>0 be Brownian motion in Rd, and let (Xt)t>0 be a dynamical
system in Rd which evolves according to the equation

dXt

dt
= b(Xt) +

dBt
dt

. (2)

The additional term dBt
dt represents ‘noise’, or random perturbations from the

environment, but is not well-defined because the paths of Brownian motion are
nowhere differentiable. Therefore, one sometimes writes

dXt = b(Xt)dt+ dBt,

which is shorthand for

Xt = X0 +

∫ t

0

b(Xt)dt+

∫ t

0

dBt.

The most common numerical integration method for SDEs is the forward
Euler method. If x is a C1 function of time t, then

dx

dt

∣∣∣∣
t=s

= lim
h→0

x(s+ h)− x(s)

h
.

The forward Euler method for ODEs of the form (1) is given by

Xt+h = Xt + hb(Xt)

and for SDEs of the form (2) it is given by

Xt+h = Xt + hb(Xt) + ξh

where 0 < h� 1 is the integration time step and the noise term ξ in the Euler
method for SDEs is modeled by a mean-zero Gaussian random variable.

For stochastic dynamical systems which evolve according to SDEs as in (2),
one can consider the probability that a system at some point x ∈ Rd will be in
a set A ⊂ Rd after a short time h > 0:

P (Xt+h ∈ A |Xt = x) .

The associated transition probability density functions of these stochastic dy-
namical systems are Gaussian because the noise term in (2) is Gaussian.

What has been the generator matrix L in case of a Markov jump process is
an infinite-dimensional operator acting on a suitable Banach space. Specifically,

Lf(x0) = lim
t→0

Ex0
[f(Xt)]− f(x0)

t
,

provided that the limit exists. Here f : Rn → R is any measurable function and
Ex0

[·] denotes the expectation over all random paths of Xt satisfying X0 = x0.
L is a second-order differential operator if f is twice differentiable.
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2 Day 2, 23.10.2012

Preliminaries from probability theory
Let (Ω, E ,P) be a probability space, where Ω is a set and E ⊆ 2Ω is a σ-field

or σ-algebra on Ω, and P is a probability measure (i.e., P is a nonnegative,
countably additive measure on (Ω, E) with the property P(Ω) = 1).

2.1 Conditioning

Let A ∈ E be a set of nonzero measure, i.e. P(A) > 0 and define EA to be the
set of all subsets of A which are elements of E , i.e.

EA := {E ⊂ A | E ∈ E} .

Definition 2.1 (Conditional probability, part I). For an event A and an event
E ∈ EA, the conditional probability of E given A is

P(E|A) :=
P(E ∩A)

P(A)
.

Remark 2.2. Think of PA := P(· |A) as a probability measure on the measurable
space (A, EA).

Given a set B ∈ E , the characteristic or indicator function χB : Ω→ {0, 1}
satisfies

χB(x) =

{
1 x ∈ B
0 x /∈ B.

Definition 2.3 (Conditional expectation, part I). Let X : Ω→ R be a random
variable with finite expectation with respect to P. The conditional expectation
of X given an event A is

E(X|A) =
E [XχA]

P(A)
.

Remark 2.4. We have

E(X|A) =
1

P(A)

∫
A

XdP =

∫
XdPA.

Remark 2.5. Observe that P(E|A) = E [χE |A].

Up to this point we have only considered the case where A satisfies P(A) > 0.
We now consider the general case.

Definition 2.6 (Conditional expectation, part II). Let X : Ω → R be an
integrable random variable with respect to P and let F ⊂ E be any sub-sigma
algebra of E. The conditional expectation of X given F is a random variable
Y := E [X|F ] with the following properties:

• Y is measurable with respect to F : ∀B ∈ B(R), Y −1(B) ∈ F .

• We have ∫
F

XdP =

∫
F

Y dP ∀F ∈ F .
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Remark 2.7. The second condition in the last definition amounts to the pro-
jection property as can be seen by noting that

E [XχF ] =

∫
F

XdP =

∫
F

Y dP = E [Y χF ] = E [E [X|F ]χF ] .

By the Radon-Nikodym theorem [MS05], the conditional expectation exists and
is unique up to P-null sets.

Definition 2.8 (Conditional probability, part II). Define the conditional prob-
ability of an event E ∈ E given A by P(E|A) := E [χE |A]

Exercise 2.9. Let X, Y : Ω → R and scalars a, b ∈ R. Prove the following
properties of the conditional expectation:

• (Linearity):
E [aX + bY |A] = aE [X|A] + bE [Y |A] .

• (Law of total expectation):

E [X] = E [X|A] + P(A) + E [X|Ac]P(Ac)

• (Law of total probability):

P(B) = P(B|A)P(A) + P(B|Ac)P(Ac).

Example 2.10. The following is a collection of standard examples.

• Gaussian random variables: Let X1, X2 be jointly Gaussian with distri-
bution N(µ,Σ), where

µ =

(
E[X1]
E[X2]

)
, Σ =

(
a b
b c

)
such that Σ is positive definite. The density of the distribution is

ρ(x) =
1√

det(2πΣ)
exp

[
−1

2
(x− µ)

>
Σ (x− µ)

]
(Ex.: Compute the distribution of X1 given that X2 = a for some a ∈ R.)

• (Conditioning as coarse-graining): Let Z = {Zi}Mi=1 be a partition of Ω,
i.e. Ω = ∪Mi=1Zi with Zi ∩ Zj = ∅ and define

Y (ω) =

M∑
i=1

E [X |Zi]χZi(ω).

Then Y = E [X|Z] is a conditional expectation (cf. Figure 3)

• (Exponential waiting times): exponential waiting times are random vari-
ables T : Ω→ [0,∞) with the memoryless property:

P (T > s+ t |T > s) = P (T > t) .

This property is equivalent to the statement that T has an exponential
distribution, i.e. that P(T > t) = exp(−λt) for a parameter value λ > 0.
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Figure 3: Simulation of butane, coarse-grained into three states Z1, Z2, Z3.

2.2 Stochastic processes

Definition 2.11 (Stochastic process). A stochastic process X = {Xt}t∈I is
a collection of random variables on a probability space (Ω, E ,P) indexed by a
parameter t ∈ I ⊆ [0,∞). We call X

• discrete in time if I ⊆ N0

• continuous in time if I = [0, T ] for any T <∞.

How does one define probabilities for X? We provide a basic argument
to illustrate the possible difficulties in defining the probability of a stochastic
process in an unambiguous way. By definition of a stochastic process, Xt =
Xt(ω) is measurable for every fixed t ∈ I, but if one has an event of the form

E = {ω ∈ Ω | Xt(ω) ∈ [a, b] ∀t ∈ I}

how does one define the probability of this event? If t is discrete, the σ-additivity
of P saves us, together with the measurability of Xt for every t. If, however, the
process is time-continuous, Xt is defined only almost surely (a.s.) and we are
free to change Xt on a set At with P(At) = 0. By this method we can change Xt

on A = ∪t∈IAt, The problem now is that P(A) need not be equal to zero even
though P(At) = 0 ∀t ∈ I. Furthermore, P(E) may not be uniquely defined. So
what can we do? The solution to the question of how to define probabilities for
stochastic processes is to use finite-dimensional distributions or marginals.

Definition 2.12. (Finite dimensional distributions): Fix d ∈ N, t1, . . . , td ∈ I.
The finite-dimensional distributions of the stochastic process X for (t1, . . . , td)
are defined as

µt1,...,td(B) := P(Xtk )k=1,...,d
(B) = P ({ω ∈ Ω |(Xt1(ω), . . . , Xtd(ω)) ∈ B})

for B ∈ B(Rd).
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Here and in the following we use the shorthand notation PY := P ◦ Y −1 to
denote the push forward of P by the random variable Y .

Theorem 2.13. (Kolmogorov Extension Theorem): Fix d ∈ N, t1, . . . , td ∈ I,
and let µt1,...,td be a consistent family of finite-dimensional distributions, i.e.

• for any permutation π of (1, . . . , d),

µt1,...,td(B1 × . . . Bd) = µ(tπ(1),...,tπ(d)
(Bπ(1) × . . .×Bπ(d))

• For t1, . . . , td+1 ∈ I, we have that

µt1,...,td+1
(B1 × . . . Bd × R) = µt1,...,td(B1 × . . .×Bd).

Then there exists a stochastic process X = (Xt)t∈I with µt1,...td as its finite-
dimensional distribution.

Remark 2.14. The Kolmogorov Extension Theorem does not guarantee unique-
ness, not even P-a.s. uniqueness, and, as we will see later on, such a kind of
uniqueness would not be a desirable property of a stochastic process.

Definition 2.15. (Filtration generated by a stochastic process X): Let F =
{Ft}t∈I with Fs ⊂ Ft for s < t be a filtration generated by Ft = σ ({Xs |s ≤ t})
is called the filtration generated by X.

2.3 Markov processes

Definition 2.16. A stochastic process X is a Markov process if

P (Xt+s ∈ A |Fs) = P (Xt+s ∈ A |Xs) (3)

where

P (·|Xs) := P (·|σ(Xs)) ,

P (E|σ(Xs)) := E [χE |σ(Xs)]

for some event E.

Remark 2.17. If I is discrete, then X is a Markov process if

P (Xn+1 ∈ A | X0 = x0, . . . , Xn = xn) = P (Xn+1 ∈ A | Xn = xn)

Example 2.18. Consider a Markov Chain (Xt)t∈N0
on a continuous state space

S ⊂ R and let S be a σ-algebra on S. Let the evolution of (Xt)t∈N0 be described
by the transition kernel p(·, ·) : S × S → [0, 1] which gives the single-step tran-
sition probabilities:

p(x,A) := P (Xt+1 ∈ A | Xt = x)

=

∫
A

q(x, y)dy.

In the above, A ∈ B(S) and q = dP
dλ is the density of the transition kernel

with respect to Lebesgue measure. The transition kernel has the property that
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∀x ∈ S, p(x, ·) is a probability measure on S, while for every A ∈ S, p(·, A) is
a measurable function on S.

For a concrete example, consider the Euler-Maruyama discretization of an
SDE for a fixed time step ∆t,

Xn+1 = Xn +
√

∆tξn+1, X0 = 0,

where (ξi)i∈N are independent, identically distributed (i.i.d) Gaussian N (0, 1)
random variables. The process (Xi)i∈N is a Markov Chain on R. The transition
kernel p(x,A) has the Gaussian transition density

q(x, y) =
1√

2π∆t
exp

[
−1

2

|y − x|2

∆t

]
.

Thus, if Xn = x, then the probability that Xn+1 ∈ A ⊂ R is given by

P (Xn+1 ∈ A|Xn = x) =

∫
A

q(x, y)dy.

3 Day 3, 30.10.2012

Recapitulation:

• A stochastic process X = (Xt)t∈I is a collection of random variables Xt :
Ω → R indexed by t ∈ I (e.g. I = [0,∞)) on some probability space
(Ω, E ,P).

• A filtration F := (Ft)t∈I is a collection of increasing sigma-algebras satis-
fying Ft ⊂ Fs for t < s. A stochastic processX is said to be adapted to F if
(Xs)s≤t is Ft-measurable. For example, if we define Ft := σ(Xs : s ≤ t),
then X is adapted to F .

• The probability distribution of a random variable X is given in terms of
its finite dimensional distributions.

Example 3.1 (Continued from last week). Let I = N0 and consider a sequence
(Xn)n∈N0

of random variables Xn = X∆t
n governed by the relation

X∆t
n+1 = X∆t

n +
√

∆tξn+1, X∆t
0 = 0a.s. (4)

where ∆t > 0, and (ξk)k∈N0
are i.i.d random variables with E [ξk] = 0 and

E
[
ξ2
k

]
= 1 (not necessarily Gaussian). To obtain a continuous-time stochastic

process, the values of the stochastic process on non-integer time values may be
obtained by linear interpolation (cf. Figure 4 below). We want to consider the
limiting behaviour of the stochastic process in the limit as ∆t goes to zero. Set
∆t = t/N for a fixed terminal time t <∞ and let N →∞ (∆t→ 0). Then, by
the central limit theorem,

X∆t
N =

√
t

N

N∑
k=1

ξk ⇀
√
tZ (5)

where Z ∼ N (0, 1), and “⇀” means “convergence in distribution”, i.e., weak
convergence of the induced probability measure; equivalently, the limiting ran-
dom variable is distributed according to N (0, t). In other words the limiting
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distribution of the random variable X∆t
N for fixed t = N∆t is the same as the

distribution of a centered Gaussian random variable with variance t. As this is
true for any t > 0, we can think of the limiting process as a continuous-time
Markov process B = (Bt)t>0 with Gaussian transition probabilities,

P (Bt+s ∈ A |Bs = x) =

∫
A

qs,t(x, y)dy

=
1√

2π|t− s|

∫
A

exp

(
−|y − x|

2

2|t− s|

)
dy.

The stochastic process B is homogeneous or time-homogeneous because the
transition probability density qs,t(·, ·) does not depend on the actual values of
t and s, but only on their difference, i.e.,

qs,t(·, ·) = q̃|s−t|(·, ·) (6)
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Figure 4: Sample paths of (X∆t
n )n for ∆t = 0.05, 0.002, 0.001 over the unit time

interval [0, 1], with piecewise constant interpolation. The lower right plot shows
the histogram (i.e., the unnormalized empirical distribution) of (X∆t

1000) at time
t = 1, averaged over 10 000 independent realizations.

Remark 3.2. The choice of exponent 1/2 in
√

∆t = (∆t)1/2 in (5) is unique.
For (∆t)α with α ∈ (0, 1

2 ), the limit of X∆t
n “explodes” in the sense that the

variance of the process blows up, i.e., E[(X∆t
N )2]→∞ as N →∞. On the other

hand, for (∆t)α with α > 1/2, X∆t
N → 0 in probability as N →∞.
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3.1 Brownian motion

Brownian motion is named after the British botanist, Robert Brown (1773-
1858), who first observed the random motion of pollen particles suspended in
water. Einstein called the Brownian process “Zitterbewegung” in his 1905 paper,
Über die von der molekularkinetischen Theorie der Wärme gefordete Bewegung
von in ruhenden Flüssigkeiten suspendierten Teilchen. The Brownian motion is
a continuous-time stochastic process which is nowhere differentiable. It is also a
martingale in the sense that on average, the particle stays in the same location
at which it was first observed. In other words, the best estimate of where the
particle will be after a time t > 0 is its initial location.

Definition 3.3. (Brownian motion) The stochastic process B = (Bt)t>0 with
Bt ∈ R is called the 1-dimensional Brownian motion or the 1-dimensional
Wiener process if it has the following properties:

(i) B0 = 0 P-a.s.

(ii) B has independent increments, i.e., for all s < t, (Bt − Bs) is a random
variable which is independent of Br for 0 ≤ r ≤ s.

(iii) B has stationary, Gaussian increments, i.e., for t > s we have1

Bt −Bs
D
= Bt−s (7a)

D
= N (0, t− s). (7b)

(iv) Trajectories of Brownian motion are continuous functions of time.

We now make precise some important notions:

Definition 3.4. (Filtered probability space) A filtered probability space is a prob-
ability space (Ω,F ,P) with a filtration (Ft)t≥0 such that ∀t ≥ 0,

Ft ⊂ F .

Remark 3.5. One may write (Ω,F ,Ft,P) to refer to a filtered probability space.
However, if one is working with a particular stochastic process X, one may
consider the sigma-algebra F on Ω to simply be the smallest sigma-algebra which
contains the union of the FXt , where FXt := σ(Xs : s ≤ t). In symbols, we
define the sigma-algebra in the probability space to be

F := ∨t≥0Ft := σ (∪t≥0Ft) .

Definition 3.6. (Martingale) A stochastic process X = (Xt)t>0 is a martingale
with respect to a filtered probability space (Ω,F ,Ft,P) if X satisfies the following
properties:

(i) X is adapted to F , i.e. Xt is measurable with respect to Ft for every t ≥ 0

(ii) X is integrable: X ∈ L1(Ω,F ,P), i.e.

E [|X|] =

∫
Ω

|X(ω)|dP(ω) <∞

1The notation “X
D
= Y ” means “X has the same distribution as Y ”.
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(iii) X has the martingale property: ∀t > s ≥ 0

E [Xt|Fs] = Xs.

Definition 3.7. (Gaussian process) A 1-dimensional process G = (Gt)t>0 is
called a Gaussian process if for any collection (t1, . . . , tm) ⊂ I for arbitrary
m ∈ N0, the random variable (Gt1 , . . . , Gtm) has a Gaussian distribution, i.e. it
has a density

f(g) =
1√

det(2πΣ)
exp

[
−1

2
(g − µ)>Σ−1(g − µ)

]
(8)

where g = (g1, . . . , gm), µ ∈ Rm is a constant vector of means and Σ = Σ> ∈
Rm×m is a symmetric positive semi-definite matrix.

Remark 3.8. The Brownian motion process is a Gaussian process with the
vector of means µ = 0 and covariance matrix

Σ =


t1 0 . . . 0

0 t2 − t1
. . .

...
...

. . .
. . . 0

0 . . . 0 tm − tm−1

 (9)

The covariance matrix is diagonal due to the independence of the increments of
Brownian motion.

Remark 3.9. Some further remarks are in order.

(a) Conditions (i)-(iii) define a consistent family of finite-dimensional dis-
tributions. Hence, the existence of the process B is guaranteed by the
Kolmogorov Extension Theorem.

(b) Conditions (i)-(iii) imply that E [Bt] = 0 and E [BtBs] = min(t, s) ∀s, t ∈
R. The proof is left as an exercise.

(c) The discrete process (X∆t
n )n∈N0

converges in distribution to a Brownian
motion (Bt)t≥0 if the time discrete is linearly interpolated between two suc-
cessive points. In other words, if we consider the continuous-time stochas-
tic processes (X∆t

t )t>0 (which is obtained by linear interpolation between
the X∆t

N ) and B as random variables on the space of continuous trajec-
tories (C(R+) and B(C(R+))), then the process (X∆t

t )t>0 converges in
distribution to B.

(d) We have that

E
[
(Bt −Bs)2

]
= E

[
(Bt−s)

2
]

by (7a) in Definition 3.3

= |t− s| by (7b) in Definition 3.3.

(e) Brownian motion enjoys the following scaling invariance, also known as
self-similarity of Brownian motion: for every t > 0 and α > 0,

Bt
D
= α−1/2Bαt.
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An alternative construction of Brownian motion

Observe that we have constructed Brownian motion by starting with the scaled
random walk process and using the Kolmogorov Extension Theorem. Now we
present an alternative method for constructing Brownian motion that is useful
for numerics, called the Karhunen-Loève expansion of Brownian motion. We will
consider this expansion for Brownian motion on the unit time interval [0, 1].

Let {ηk}k∈N be a collection of independent, identically distributed (i.i.d)
Gaussian random variables distributed according to N (0, 1), and let {φk(t)}k∈N
be an orthonormal basis of

L2([0, 1]) =

{
u : [0, 1]→ R :

∫ 1

0

|u(t)|2dt <∞
}
. (10)

By construction, the basis functions satisfy

〈φi, φj〉 =

∫ 1

0

φi(t)φj(t)dt = δij ,

and we can represent any function ∀f ∈ L2([0, 1]) by

f(t) =
∑
k∈N

αkφk(t)

for αk = 〈f, φk〉. We have the following result.

Theorem 3.10. (Karhunen-Loève): The process (Wt)0≤t≤1 defined by

Wt =
∑
k∈N

ηk

∫ t

0

φk(s)ds (11)

is a Brownian motion.

Proof. We give only a sketch of the proof. For details, see the Appendix in
[MS05], or [KS91]). The key components of the proof are to show the following:

(i) The infinte sum which defines the Karhunen-Loève expansion is absolutely
convergent, uniformly on [0, 1].

(ii) It holds that E [Wt] = 0 and E [WtWs] = min(s, t).

4 Day 4, 06.11.2012

4.1 Brownian motion

From last week, we saw that the Brownian motion (Bt)t≥0 is a continuous-time
stochastic process on R with

• stationary, independent, Gaussian increments

• a.s. continuous paths. That is, for fixed ω, each (Bt)t≥0(ω) is a continuous
trajectory in R.

13



Moreover the scaled random walk defined by

X∆t
n+1 = X∆t

n +
√

∆tξn+1

with linear interpolation converges weakly (i.e. converges in distribution) to
the Brownian motion process. Above, the (ξn)n∈N are independent, identically
distributed (i.i.d) normalized Gaussian random variables (i.e. ξn is Gaussian
with mean zero and variance 1).

Remark 4.1. Two remarks are in order.

• Continuity can be understood using the Lévy construction of Brownian
motion on the set of dyadic rationals,

D :=
⋃
n∈N

Dn, Dn :=

{
k

2n
: k = 0. . . . , 2n

}
.

The construction of Brownian motion on the unit time interval is as fol-
lows. Let {Zt}t∈D be a collection of independent, normalized random vari-
ables defined on a probability space. Define the collection of functions
(Fn)n∈N, where Fn : [0, 1]→ R are given by

Fn(t) :=


0 t ∈ Dn−1

2−(j+1)/2Zt t ∈ Dj \Dj−1

lin. interp. in between.

Then the process

B(t) =

∞∑
n=1

Fn(t).

is indeed a Brownian motion on [0, 1]. The Gaussianity of the {Zt}t∈D
leads to the stationary, independent Gaussian increments of the process
(Bt)t∈[0,1]. The continuity of the process follows from an application of
the Borel-Cantelli Lemma, which states that there exists a random and
almost surely finite number N ∈ N such that for all n ≥ N and d ∈ Dn,
|Zd| < c

√
n holds. This boundedness condition implies that ∀n ≥ N we

have a decay condition for the Fn:

‖Fn‖∞ < c
√
n2−n/2.

Therefore the sum
∑
j Fj(·) converges uniformly on [0, 1]. As each Fj is

continuous and the uniform limit of continuous functions is continuous,
the process (Bt)t∈[0,1] is continuous. For more details, see [MP10].

• The Hausdorff dimension dimH of Brownian motion paths depends on the
dimension of the space Rd in which the Brownian motion paths live.2 Let
B[0,1] = {Bt ∈ Rd : t ∈ [0, 1]} be the graph of Bt over I = [0, 1]. Then

dimHB[0,1] =

{
3/2 d = 1

2 d ≥ 2 .

2If you do not know what this is, just think of the box counting dimension that is an upper
limit of the Hausdorff dimension.
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The significance of this is as follows: if you consider Brownian motion
paths confined to a smooth and compact two-dimensional domain and im-
pose reflecting boundary conditions, then the Brownian motion paths will
fill the domain in the limit as t→∞.

4.2 Brownian bridge (Karhunen-Loève expansion of Brow-
nian motion)

Theorem 4.2. Let {ηk}k∈N be i.i.d normalized random variables and {φk}k∈N
form a real orthonormal basis of L2([0, 1]). Then

Wt =
∑
k∈N

ηk

∫ t

0

φk(s)ds

is a Brownian motion on the interval I = [0, 1].

Exercise 4.3. Show that, for the definition of (Wt)t∈[0,1] above, it holds that
E [WtWs] = min(s, t).
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Figure 5: Sample paths of the Karhunen-Loève expansion of (Wt for M =
2, 64, 2048 basis functions (you can guess which one is which). The lower right
plot shows the unnormalized histogram of Wt at time t = 1, using M = 64 basis
functions and averaged over 10 000 independent realizations.

Remark 4.4. Unlike the scaled random walk construction of Brownian motion,
no forward iterations are required here. This helps for the consideration of
round-off errors in the construction of (Wt)t∈[0,1]. Furthermore:
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• Standard choices for the orthonormal basis {φk}k∈N are Haar wavelets or
trigonometric functions. Hence the numerical error can be controlled by
truncating the series and by the choice of the basis.

• To obtain a Brownian motion on any general time interval [0, T ], it suffices
to use the scaling property, e.g.

W[0,T ]
D
=
√
TW[0,1]/T

=
√
T
∑
k∈N

ηk

∫ t/T

0

φk(s)ds.

4.3 Application: filtering of Brownian motion

Suppose we know that W0 = 0 and W1 is equal to some constant ω. Without
loss of generality, let ω = 0. Suppose we wanted to generate a Brownian motion
path which interpolated between the values W0 = 0 and W1 = 0.

Definition 4.5. A continuous, mean-zero Gaussian process (BBt)t≥0 is called
a Brownian bridge to ω if it has the same distribution as (Wt)t∈[0,1] conditional
on the terminal value W1 = ω. Equivalently, (BBt)t≥0 is a Brownian bridge if

Cov [BBtBBs] = min(s, t)− st.

Lemma 4.6. If (Wt)t∈[0,1] is a Brownian motion, then BBt = Wt − tW1 is a
Brownian bridge.

Proof. Observe that

E [BBt] = E [Wt − tW1] = 0− t · 0 = 0,

so that (BBt)t∈[0,1] is indeed mean-zero. The process (BBt)t∈[0,1] inherits con-
tinuity from the process (Wt)t∈[0,1]. The covariance process is given by

Cov(BBtBBs) = E [BBtBBs] = E [(Wt − tW1) (Ws − sW1)]

= E [WtWs]− tE [W1Ws]︸ ︷︷ ︸
=min(s,1)

−sE [W1Wt]︸ ︷︷ ︸
=min(t,1)

+tsE [W1W1]

= min(t, s)− ts− st+ ts .

4.3.1 How does one simulate a Brownian bridge?

First approach: forward iteration, using Euler’s method. The time interval is
[0, 1] and we have a time step of ∆t := 1/N , so we have (N +1) discretized time
nodes (tn = n∆t)n=0,...,N and (N+1) values (Y ∆t

n )n=0,...,N . Let {ξn}n=0,...,N−1

be a collection of i.i.d normalized random variables. Forward iteration gives

Y ∆t
n+1 = Y ∆t

n

(
1− ∆t

1− tn

)
+
√

∆tξn+1.

It holds that 1 − tN−1 = ∆t by definition of ∆t = 1/N . Therefore from the
formula above we have

Y ∆t
N =

√
∆tξN+1.
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Therefore Y ∆t
N is a mean zero Gaussian random variable with variance ∆t. While

this implies that Y ∆t
N should converge in probability to the value 0 as the step

size ∆t→ 0, the forward iteration approach is not optimal because the random
variable ξN+1 is continuous, so

P
(
Y ∆t
N = 0

)
= 0.

Therefore this construction of the Brownian bridge to the value ω = 0 will in
general not yield processes which are at 0 at time t = 1. As a matter of fact,
Y ∆t
N is unbounded and can be arbitrarily far away from zero.

Second approach: Recall the Karhunen-Loéve construction of Brownian
motion and choose trigonometric functions as an orthonormal basis. Then the
process (Wt)t∈[0,1] given by

Wt(ω) =
√

2

M∑
k=1

ηk(ω)
sin((k − 1

2 )πt

(k − 1
2 )π

is a Brownian motion and we can define the Brownian bridge to ω at t = 1 by

BBt = Wt − t(W1 − ω).

Remark 4.7. It holds that

BBt =
√

2
∑
k∈N

ηk
sin(kπt)

kπ

=
∑
k∈N

ηk
√
λkψk(t),

where {λk, ψk}k∈N =
{√

2/kπ, sin(kπt)
}
k∈N is the eigensystem of the covariance

operator T : L1([0, 1])→ L1([0, 1]) of the process (BBt)t∈[0,1], defined by

(Tu)(t) =

∫ 1

0

Cov(BBtBBs)︸ ︷︷ ︸
=min(t,s)−st

u(s)ds ,

i.e.,
Tψk(·) = λkψk(·).

The second approach works for any stochastic process which has finite variance
over a finite time interval. For details, see [Xiu10].
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Figure 6: Sample paths of the Brownian bridge approximation, using the Euler
scheme with ∆t = 0.05 (left panel) and Karhunen-Loève expansion with M = 20
basis functions (right panel).

5 Day 5, 13.11.2012 (Lecturer: Stefanie W.)

5.1 Stochastic Integration (Itô integral)

Recall that Brownian motion (Bt)t>0 is a stochastic process with the following
properties:

• B0 = 0 P-a.s.

• ∀0 ≤ t0 < t1 < t2 < . . . < tn, the increments Bti −Bti−1
are independent

for i = 1, . . . , n and Gaussian with mean 0 and variance ti − ti−1.

• t 7→ Bt(ω) is continuous P-a.s. but is P-a.s. nowhere differentiable.

One of the motivations for the development of the stochastic integral lies in
financial mathematics, where one wishes to determine the price of an asset
that evolves randomly. The French mathematician Louis Bachelier is generally
considered one of the first people to model random asset prices. In his PhD
thesis, Bachelier considered the following problem. Let the value St of an asset
at time t > 0 be modeled by

St = σBt

where σ > 0 is a scalar that describes the volatility of the stock price. Let f(t)
be the amount of money an individual invests in the asset in some infinitesimal
time interval [t, t+ dt]. Then the wealth of the individual at the end of a time
interval [0, T ] is given by∫ T

0

f(t)dSt = σ

∫ T

0

f(t)dBt.

However, it is not clear what the expression ‘dBt’ means. In this section, we will
consider what an integral with respect to dBt means, and we will also consider
the case when the function f depends not only on time but on the random
element ω.
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The first idea is to rewrite∫
f(t)dBt =

∫
f(t)

dBt
dt

dt

but as Brownian motion is almost surely nowhere differentiable, we cannot write
dBt
dt .

The second idea is to proceed as in the definition of the Lebesgue integral:
start with simple step functions and later extend the definition to more general
functions by the Itô Isometry.

Step 1: Consider simple functions

f(t) =

n∑
i=1

aiχ(ti,ti+1](t)

where χA is the indicator function of a set A satisfying

χA(x) =

{
1 x ∈ A
0 x /∈ A.

Observe that f takes a finite number n of values. By the theory of
Lebesgue integration, we know that the set of these simple functions is
dense in L2([0,∞)). We also know that the usual Riemann integral of
such a function f corresponds to the area under the graph of f , with∫ ∞

0

f(t)dt =
∑
i

ai(ti+1 − ti)

Step 2: We now extend the method above to stochastic integral with respect to
Brownian motion: ∫

f(t)dBt =
∑

ai(Bti+1
−Bti).

Remark 5.1. By the equation above, it follows that the integral
∫
f(t)dBt

is a random variable, since the Bti are random variables. Since increments
of Brownian motion are independent and Gaussian, the integral

∫
f(t)dBt

is normally distributed with zero mean. What about its variance?

Lemma 5.2. (Itô Isometry for simple functions) For a simple function
f(t) =

∑
i aiχ(ti,ti+1](t), it holds that

E

[(∫ ∞
0

f(t)dBt

)2
]

=

∫ ∞
0

(f(t))
2
dt.
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Proof:

var

(∫ ∞
0

f(t)dBt

)
= var

(∑
i

ai
(
Bti+1

−Bti
))

=

n∑
i=1

a2
i var

(
Bti+1 −Bti

)
=

n∑
i=1

a2
i (ti+1 − ti)

=

n∑
i=1

a2
i

∫ ∞
0

χ(ti,ti+1]dt

=

∫ n∑
i=1

a2
iχ(ti,ti+1]dt

=

∫
(f(t))

2
dt.

On the other hand it holds

var

(∫
f(t)dBt

)
= E

[(∫
f(t)dBt

)2
]
−

E
[∫

f(t)dBt

]
︸ ︷︷ ︸

=0


2

= E

[(∫
f(t)dBt

)2
]

Step 3: Now we extend the definition of the integral to L2([0,∞)). The main
result is the following

Theorem 5.3. (Itô integral for L2([0,∞)) functions) The definition of
the Itô integral can be extended to elements f ∈ L2([0,∞)) by setting∫ ∞

0

f(t)dBt := lim
n→∞

∫ ∞
0

fn(t)dBt

where the sequence (fn)n∈N is a sequence of a simple functions satisfying
fn → f in L2([0,∞)), i.e.

‖fn − f‖L2([0,∞)) =

(∫ ∞
0

(fn − f)
2

(t)dt

)1/2

−→
n→∞

0.

Proof : By the Itô isometry, we can show that (
∫
fn(t)dBt)n∈N is a Cauchy

sequence in the L2 space

L2(Ω,F ,P) :=
{
F : Ω→ R : F−1(B(R)) ⊂ F , ‖F‖2L2(Ω,F,P) <∞

}
where

‖F‖2L2(Ω,F,P) :=

∫
F 2(ω)dP(ω).
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To show that the sequence (
∫
fn(t)dBt)n∈N is a Cauchy sequence, let

(fl)l∈N be a sequence of functions converging to f in L2([0,∞)) and con-
sider for m,n ∈ N∥∥∥∥∫ fn(t)dBt −

∫
fm(t)dBt

∥∥∥∥
L2(Ω,F,P)

=

(
E

[(∫
fn(t)dBt −

∫
fm(t)dBt

)2
])1/2

=

(
E

[(∫
fn(t)− fm(t)dBt

)2
])1/2

=

(∫
(fn(t)− fm(t))

2
dt

)1/2

(Itô isometry)

= ‖fn − fm‖L2([0,∞))

≤ ‖fn − f‖L2([0,∞)) + ‖fm − f‖L2([0,∞))

and using that ‖fn− f‖L2([0,∞)) and ‖fm− f‖L2([0,∞)) → 0 as m,n→∞,
the result follows.
We use the fact that L2(Ω,F ,P) is complete (see ...) to see that the limit
exists and is in the same space. Moreover, by the Itô isometry the limit is
independent of the sequence (fn)n∈N used to approximate f in L2([0,∞)).

Example 5.4. Consider the random variable
∫∞

0
exp(−t)dBt. How is it

distributed? Using the Itô Isometry, the random variable is Gaussian with
mean zero and variance 1

2 =
∫∞

0
exp(−2t)dt.

Corollary 5.5. The Itô Isometry holds as well for f ∈ L2([0,∞)), not
just simple functions.

Step 4 : Now we consider functions f which depend both on the random element
ω as well as time t. That is, we consider stochastic integrals of stochastic
processes f : [0,∞)× Ω→ R with the following properties:

(i) f is B×F-measurable, where B is the Borel sigma-algebra on [0,∞)
and F is a given sigma-algebra on Ω.

(ii) f(t, ω) is adapted with respect to Ft, where Ft := σ (Bs : s ≤ t)
(iii) E

[∫
f(t, ω)2dt

]
<∞.

Consider simple stochastic processes of the form

f(t, ω) =

n∑
i=1

ai(ω)χ(ti,ti+1](t).

Then ∫
f(t, ω)dBt =

n∑
i=1

ai(ω)
(
Bti+1

−Bti
)
.
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Example 5.6. Fix n ∈ N, fix a time step ∆t := 2−n and define the time
nodes ti := i∆t for i = 0, 1, 2, . . .. Let (Bt)t>0 be the standard Brownian
motion. Define the following processes on [0,∞):

f1(t, ω) =
∑
i∈N

Bti(ω)χ[ti,ti+1)(t)

f2(t, ω) =
∑
i∈N

Bti+1
(ω)χ[ti,ti+1)(t).

Now fix T > 0 and N such that T = tN = N∆t = N2−n and compute the
expected values of the integrals of f1 and f2 over [0, T ]. By the independent
increments property of Brownian motion (or the martingale property of
Brownian motion), we have

E

[∫ T

0

f1(t, ω)dBt

]
=

N−1∑
i=0

E
[
Bti

(
Bti+1 −Bti

)]
= 0.

Using the fact above with linearity of expectation, we also have

E

[∫ T

0

f2(t, ω)dBt

]
=

N−1∑
i=0

E
[
Bti+1

(
Bti+1 −Bti

)]
− 0

=

N−1∑
i=0

(
E
[
Bti+1

(
Bti+1 −Bti

)]
− E

[
Bti

(
Bti+1 −Bti

)])
=

N−1∑
i=0

E
[(
Bti+1 −Bti

)2]
=

N−1∑
i=0

ti+1 − ti = T.

In the case of Riemann integration of deterministic integrals, letting n→
∞ would lead to the result that both integrals above are equal. We see
that for stochastic integration, this is not the case; even if we let n→∞,
the expectations of the Itô integrals would not be equal. This is because
the choice of endpoint of the interval matters in stochastic integration.
Choosing the left endpoint (i.e. choosing Bti) for f1 and the right endpoint
(i.e. Bti+1

for f2 leads to different expectations. Note also that taking
the right endpoint in f2 leads to f2 not being adapted, since Bti+1 is not
measurable with respect to Ft for t < ti+1. Therefore, by property (ii)
above, we may not integrate f2 with respect to dBt in the way we have just
described.
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