Lecture notes for Numerik IVe - Numerics for
Stochastic Processes, Wintersemester 2012/2013.
Instructor: Prof. Carsten Hartmann

Scribe: H. Lie

Course outline

1. Probability theory

(a) Some basics: stochastic processes, conditional probabilities and ex-
pectations, Markov chains
References: [MS05, Kle06]

2. Stochastic differential equations

(a) Brownian motion: properties of the paths, Strong Markov Property
References: [MS05, Oks03, Arn73)

(b) Stochastic integrals: It6 integrals, 1t6 calculus, It6 isometry
References: [MS05, Dks03, Arn73]

(c) SDEs: existence and uniqueness of solutions, numerical discretisa-
tion, applications from physics, biolopgy and finance
References: [Dks03, Arn73, KP92]

(d) Misc: Kolmogorov forward and backward PDEs, infinitesimal gen-
erators, semigroup theory, stopping times, invariant distributions,
Markov Chain Monte Carlo methods for PDEs and SDEs
References: [Dks03, Arn73, KP92]

3. Filtering theory (if time permits)

(a) Linear filtering: conditional expectation, best approximation, Kalman-
Bucy filter for SDEs

Reference: [Jaz07, Dks03]
4. Approximation of stochastic processes

(a) Spectral theory of Markov chains: infinitesimal generator, metasta-
bility, aggregation of Markov chains

References: [HMO05, Sar11]

(b) Markov jump processes: applications from biology, physiocs and fi-
nance, Markov decision processes, control theory
References: [GHLO9]
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Figure 1: Simulation of a butane molecule and its approximation by a 3-state
Markov chain (states in blue, green and yellow; solvent molecules not shown).
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1.1 Different levels of modelling
1.1.1 Time-discrete Markov chains

Time index set [ is discrete, e.g. I C N and state space S is countable or finite,
e.g. S = {s1,52,s83} (see Figure 1). Key objects are transition probabilities.
For a state space S = {1,...,n}, the transition probabilities p;; satisfy

pij =P (Xop1 =7 | Xy =1)

and yield a row-stochastic matrix P = (p;;)i jes-

1.1.2 Markov jump processes

These are time-continuous, discrete state-space Markov chains. Time index set
I C Ry, S discrete. For a fixed time step h > 0, the transition probabilities are
given by (see Figure 2)

P(Xyn = S | X =s;) = he;; + o(h)

where L = ({;5); jes and P}, are matrices satisfying P, = exp (hL).
Note: the matrix L is row sum zero, i.e. 3>, ¢;; = 0. The waiting times for
the Markov chain in any state s; are exponentially distributed in the sense that

P(Xt+s =8;, S€E [O,T) |Xt = Si) = exp (6“7')
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Figure 2: Simulation of butane: typical time series of the central dihedral angle
(blue: metastable diffusion process, red: Markov jump process)

and the ‘average waiting time’ is —¢;; (by definition of the exponential distribu-
tion).

Note: the spectrum of the matrix Py, is contained within the unit disk, i.e.
for every eigenvalue A of Py, |A\| < 1. This property is a consequence of P, being
row-stochastic, i.e. that Zj Py ;j = 1. Since P, = exp(hL) it follows that

o(Py)CD:={zeR||z|<1} < o(L) CC ={yeC|Re(y) <0}

Example 1.1. Suppose one has a reversible reaction in which one has a large
collection of N molecules of the same substance. The molecules can be either
in state A or state B and the molecules can change between the two states. Let
kt denote the rate of the reaction in which molecules change from state A to B
and let k= denote the rate at which molecules change from state B to A.

Fort > 0, consider the quantity

p(t) := P (number of molecules in state A at time t is i)

where i = {0,...,N}. One can define quantities uP(t) in a similar way, and
one can construct balance laws for these quantities, e.g.
dpi (t)

T = R () 4+ kT () = (B R ().

The above balance law can be written in vector notation using a tridiagonal
matriz L. By adding an initial condition one can obtain an initial value problem

dpt(t)
dt

The solution of the initial value problem above is

P (t) = poexp (tLT).

= LTp(t), u?(0) = po.



1.1.3 Stochastic differential equations (SDEs)

These are time-continuous, continuous state space Markov chains. SDEs may
be considered to be ordinary differential equations (ODEs) with an additional
noise term (cf. Figure 2). Let b : R™ — R™ be a smooth vector field and let x(t)
be a deterministic dynamical system governed by the vector field b(-). Then
x(t) evolves according to

d

d—;c =b(z), =(0)= xo. (1)
Now let (B¢);>0 be Brownian motion in R?, and let (X;);~0 be a dynamical
system in R? which evolves according to the equation

ix, dB,
T b(X;) + 7 (2)

The additional term dﬁt represents ‘noise’, or random perturbations from the
environment, but is not well-defined because the paths of Brownian motion are

nowhere differentiable. Therefore, one sometimes writes

dX, = b(X;)dt + dB,,

which is shorthand for
t t
X: = Xo +/ b(Xt)dt+/ dB;.
0 0
The most common numerical integration method for SDEs is the forward

Euler method. If z is a O function of time ¢, then

dx z(s+h) —x(s)
— m——
dt|,_, h—0 h

The forward Euler method for ODEs of the form (1) is given by
Xiyn = X¢ + hb(Xy)
and for SDEs of the form (2) it is given by
Xiyn = X +hb(Xy) + &

where 0 < h < 1 is the integration time step and the noise term ¢ in the Euler
method for SDEs is modeled by a mean-zero Gaussian random variable.

For stochastic dynamical systems which evolve according to SDEs as in (2),
one can consider the probability that a system at some point 2 € R? will be in
a set A C R? after a short time h > 0:

]P(Xﬂ,.h € A |Xt = ,I) .

The associated transition probability density functions of these stochastic dy-

namical systems are Gaussian because the noise term in (2) is Gaussian.
What has been the generator matrix L in case of a Markov jump process is

an infinite-dimensional operator acting on a suitable Banach space. Specifically,

Lf(zg) = gg% Egy [f(th} — f(=o)

)

provided that the limit exists. Here f: R™ — R is any measurable function and
E.,[] denotes the expectation over all random paths of X, satisfying Xo = xo.
L is a second-order differential operator if f is twice differentiable.
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Preliminaries from probability theory

Let (€, £,P) be a probability space, where € is a set and £ C 29 is a o-field
or o-algebra on Q, and P is a probability measure (i.e., P is a nonnegative,
countably additive measure on (£2,€) with the property P(Q2) = 1).

2.1 Conditioning

Let A € € be a set of nonzero measure, i.e. P(A4) > 0 and define £4 to be the
set of all subsets of A which are elements of £, i.e.

Ea={ECA|Ecé&}.

Definition 2.1 (Conditional probability, part I). For an event A and an event
E € €4, the conditional probability of E given A is

P(ENA)
P(EJA) := ————=.
(Bl4) = =5
Remark 2.2. Think of P4 := P(- |A) as a probability measure on the measurable
space (A, E4).
Given a set B € &, the characteristic or indicator function xp : Q — {0,1}
satisfies
(@) 1 zeB
xTr) =
X5 0 x¢ B.

Definition 2.3 (Conditional expectation, part I). Let X : Q@ — R be a random
variable with finite expectation with respect to P. The conditional expectation
of X given an event A is

E(X|A) = W.

Remark 2.4. We have

1
E(X|A)=—~ | XdP= | XdP,4.
(¥14) = gy [ X2 = [ X
Remark 2.5. Observe that P(E|A) = E[xg|A4].

Up to this point we have only considered the case where A satisfies P(A4) > 0.
We now consider the general case.

Definition 2.6 (Conditional expectation, part II). Let X : @ — R be an
integrable random variable with respect to P and let F C £ be any sub-sigma
algebra of £. The conditional expectation of X given F s a random variable
Y :=E[X|F] with the following properties:

e Y is measurable with respect to F: VB € B(R), Y~Y(B) € F.

/Xd]P’:/YdIP’ VEF € F.
F F

o We have



Remark 2.7. The second condition in the last definition amounts to the pro-
jection property as can be seen by noting that

Bxe) = [ XdP = [ YdP—E[Yxe] ~E[E (X)) xe).
F F
By the Radon-Nikodym theorem [MS05], the conditional expectation exists and

is unique up to P-null sets.

Definition 2.8 (Conditional probability, part II). Define the conditional prob-
ability of an event E € £ given A by P(E|A) := E [xg|4]

Exercise 2.9. Let X, Y : Q — R and scalars a,b € R. Prove the following
properties of the conditional expectation:

e (Linearity):
E[aX 4+ bY |A] = aE [X|A] + DE[Y|A].

e (Law of total expectation):
E[X]=E[X|A] +P(4) + E[X|A°]P(A)
e (Law of total probability):
P(B) = P(B|A)P(A) + P(B|A°)P(A°).
Example 2.10. The following is a collection of standard examples.

o Gaussian random variables: Let X1, Xo be jointly Gaussian with distri-
bution N(u,>), where

o= (ebed) == ?)

such that 3 is positive definite. The density of the distribution is

*;ex *1 T — T xr —

(Ex.: Compute the distribution of X1 given that Xo = a for some a € R.)
e (Conditioning as coarse-graining): Let Z = {Zi}?il be a partition of 1,
ie. O =UM, Z;, with Z; N Z; = 0 and define

M

Y(w) =Y E[X |Z]xz(w).

i=1
Then'Y = E[X|Z] is a conditional expectation (cf. Figure 3)

e (Exponential waiting times): exponential waiting times are random vari-
ables T : 0 — [0,00) with the memoryless property:

PT>s+t|T>s)=P(T>t).

This property is equivalent to the statement that T has an exponential
distribution, i.e. that P(T > t) = exp(—At) for a parameter value A > 0.
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Figure 3: Simulation of butane, coarse-grained into three states Z;, Zo, Z3.

2.2 Stochastic processes

Definition 2.11 (Stochastic process). A stochastic process X = {X;},.; is
a collection of random variables on a probability space (2, E,P) indexed by a
parametert € I C [0,00). We call X

e discrete in time if I C Ny
e continuous in time if I =[0,T] for any T < co.

How does one define probabilities for X? We provide a basic argument
to illustrate the possible difficulties in defining the probability of a stochastic
process in an unambiguous way. By definition of a stochastic process, X; =
X (w) is measurable for every fixed ¢ € I, but if one has an event of the form

E={we| Xi(w) € [a,b] Vt € I}

how does one define the probability of this event? If ¢ is discrete, the o-additivity
of P saves us, together with the measurability of X; for every t. If, however, the
process is time-continuous, X; is defined only almost surely (a.s.) and we are
free to change X; on a set A; with P(A4;) = 0. By this method we can change X;
on A = User Ay, The problem now is that P(A) need not be equal to zero even
though P(A;) = 0 Vt € I. Furthermore, P(E) may not be uniquely defined. So
what can we do? The solution to the question of how to define probabilities for
stochastic processes is to use finite-dimensional distributions or marginals.

Definition 2.12. (Finite dimensional distributions): Fird € N, t1,...,tq € I.
The finite-dimensional distributions of the stochastic process X for (t1,...,tq)
are defined as

:U'tl,»---,td(B) = P(th)k‘:l,.,.,d(B) = ]P)({w €N |(Xt1(w)a e "Xtd(w)) € B})

for B € B(R?).



Here and in the following we use the shorthand notation Py :=PoY ! to
denote the push forward of P by the random variable Y.

Theorem 2.13. (Kolmogorov Extension Theorem): Fiz d € N, tq,...,tq € I,
and let piy, ...+, be a consistent family of finite-dimensional distributions, i.e.

e for any permutation © of (1,...,d),
Mth...,td(Bl X Bd) = M(tﬁ(l),...,t,r(d)(Bw(l) X ... X Bﬂ'(d))

o Forty,...,tqy1 € I, we have that

Mt1,~~-7td+1 (Bl X .. .Bd X R) = llj’tlp-wtd(Bl X ... X Bd)
Then there exists a stochastic process X = (Xi)ier with pe, .. ¢, as its finite-
dimensional distribution.

Remark 2.14. The Kolmogorov Extension Theorem does not guarantee unique-
ness, not even P-a.s. uniqueness, and, as we will see later on, such a kind of
uniqueness would not be a desirable property of a stochastic process.

Definition 2.15. (Filtration generated by a stochastic process X ): Let F =
{Fi}ier with Fs C Fy for s <t be a filtration generated by Fy = o ({ X, |s < t})
1s called the filtration generated by X .

2.3 Markov processes

Definition 2.16. A stochastic process X is a Markov process if
P(Xits € A |Fs) =P (Xe45 € A |Xs) (3)
where
P(Xs) =P (|o(Xs)),
P(Elo(Xs)) :==E[xz |o(X,)]
for some event E.

Remark 2.17. If I is discrete, then X is a Markov process if
]P)(Xn+1 cA | XQ :SC(),...,Xn :In) :P(Xn+1 cA ‘ Xn :In)

Example 2.18. Consider a Markov Chain (X;)ien, on a continuous state space
S CR and let S be a o-algebra on S. Let the evolution of (Xy)ien, be described
by the transition kernel p(-,-) : S x & — [0, 1] which gives the single-step tran-
sition probabilities:

p(z,A) =P (X1 € A| Xy =1x)
= / q(z,y)dy.
A

In the above, A € B(S) and q = % is the density of the transition kernel

with respect to Lebesque measure. The transition kernel has the property that



Vo € S, p(x,-) is a probability measure on S, while for every A € S, p(-, A) is
a measurable function on S.

For a concrete example, consider the Euler-Maruyama discretization of an
SDE for a fixed time step At,

Xn+1 = Xn + v Atfn+17 XO = 07

where (&)ien are independent, identically distributed (i.i.d) Gaussian N(0,1)
random variables. The process (X;)ien is a Markov Chain on R. The transition
kernel p(xz, A) has the Gaussian transition density

1 1y —a=f?
q(z,y) = 5P| "5 Ar |

Thus, if X,, = x, then the probability that X, 11 € A C R is given by

P(X,1 € AIX, =12) = / q(x, y)dy.
A
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