
Lecture notes for Numerik IVc - Numerics for

Stochastic Processes, Wintersemester 2012/2013.

Instructor: Prof. Carsten Hartmann

Scribe: H. Lie

Course outline

1. Probability theory

(a) Some basics: stochastic processes, conditional probabilities and ex-
pectations, Markov chains

References: [MS05,Kle06]

2. Stochastic di↵erential equations

(a) Brownian motion: properties of the paths, Strong Markov Property

References: [MS05,Øks03,Arn73]

(b) Stochastic integrals: Itô integrals, Itô calculus, Itô isometry

References: [MS05,Øks03,Arn73]

(c) SDEs: existence and uniqueness of solutions, numerical discretisa-
tion, applications from physics, biolopgy and finance

References: [Øks03,Arn73,KP92]

(d) Misc: Kolmogorov forward and backward PDEs, infinitesimal gen-
erators, semigroup theory, stopping times, invariant distributions,
Markov Chain Monte Carlo methods for PDEs and SDEs

References: [Øks03,Arn73,KP92]

3. Filtering theory (if time permits)

(a) Linear filtering: conditional expectation, best approximation, Kalman-
Bucy filter for SDEs

Reference: [Jaz07,Øks03]

4. Approximation of stochastic processes

(a) Spectral theory of Markov chains: infinitesimal generator, metasta-
bility, aggregation of Markov chains

References: [HM05,Sar11]

(b) Markov jump processes: applications from biology, physiocs and fi-
nance, Markov decision processes, control theory

References: [GHL09]
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Figure 1: Simulation of a butane molecule and its approximation by a 3-state
Markov chain (states in blue, green and yellow; solvent molecules not shown).

1 Day 1, 16.10.2012

1.1 Di↵erent levels of modelling

1.1.1 Time-discrete Markov chains

Time index set I is discrete, e.g. I ✓ N and state space S is countable or finite,
e.g. S = {s1, s2, s3} (see Figure 1). Key objects are transition probabilities.
For a state space S = {1, . . . , n}, the transition probabilities p

ij

satisfy

p

ij

= P (X
t+1 = j | X

t

= i)

and yield a row-stochastic matrix P = (p
ij

)
i,j2S

.

1.1.2 Markov jump processes

These are time-continuous, discrete state-space Markov chains. Time index set
I ✓ R+, S discrete. For a fixed time step h > 0, the transition probabilities are
given by (see Figure 2)

P (X
t+h

= s

j

|X
t

= s

i

) = h`

ij

+ o(h)

where L = (`
ij

)
i,j2S

and P

h

are matrices satisfying P

h

= exp (hL).
Note: the matrix L is row sum zero, i.e.

P
j

`

ij

= 0. The waiting times for
the Markov chain in any state s

i

are exponentially distributed in the sense that

P (X
t+s

= s

i

, s 2 [0, ⌧) |X
t

= s

i

) = exp (`
ii

⌧)
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Figure 2: Simulation of butane: typical time series of the central dihedral angle
(blue: metastable di↵usion process, red: Markov jump process)

and the ‘average waiting time’ is �`

ii

(by definition of the exponential distribu-
tion).

Note: the spectrum of the matrix P

h

is contained within the unit disk, i.e.
for every eigenvalue � of P

h

, |�|  1. This property is a consequence of P
h

being
row-stochastic, i.e. that

P
j

P

h,ij

= 1. Since P

h

= exp(hL) it follows that

�(P
h

) ⇢ D :=
�
x 2 R2 | |x|  1

 
, �(L) ⇢ C� = {y 2 C |Re(y)  0}

Example 1.1. Suppose one has a reversible reaction in which one has a large
collection of N molecules of the same substance. The molecules can be either
in state A or state B and the molecules can change between the two states. Let
k

+ denote the rate of the reaction in which molecules change from state A to B

and let k� denote the rate at which molecules change from state B to A.
For t > 0, consider the quantity

µ

A

i

(t) := P (number of molecules in state A at time t is i)

where i = {0, . . . , N}. One can define quantities µ

B

i

(t) in a similar way, and
one can construct balance laws for these quantities, e.g.

dµ

A

i

(t)

dt

= k

+
µ

A

i+1(t) + k

�
µ

A

i�1(t)� (k+ + k

�)µA

i

(t).

The above balance law can be written in vector notation using a tridiagonal
matrix L. By adding an initial condition one can obtain an initial value problem

dµ

A(t)

dt

= L

>
µ

A(t), µ

A(0) = µ0.

The solution of the initial value problem above is

µ

A(t) = µ0 exp
�
tL

>�
.
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1.1.3 Stochastic di↵erential equations (SDEs)

These are time-continuous, continuous state space Markov chains. SDEs may
be considered to be ordinary di↵erential equations (ODEs) with an additional
noise term (cf. Figure 2). Let b : Rn ! Rn be a smooth vector field and let x(t)
be a deterministic dynamical system governed by the vector field b(·). Then
x(t) evolves according to

dx

dt

= b(x), x(0) = x0. (1)

Now let (B
t

)
t>0 be Brownian motion in Rd, and let (X

t

)
t>0 be a dynamical

system in Rd which evolves according to the equation

dX

t

dt

= b(X
t

) +
dB

t

dt

. (2)

The additional term dBt
dt

represents ‘noise’, or random perturbations from the
environment, but is not well-defined because the paths of Brownian motion are
nowhere di↵erentiable. Therefore, one sometimes writes

dX

t

= b(X
t

)dt+ dB

t

,

which is shorthand for

X

t

= X0 +

Z
t

0
b(X

t

)dt+

Z
t

0
dB

t

.

The most common numerical integration method for SDEs is the forward
Euler method. If x is a C

1 function of time t, then

dx

dt

����
t=s

= lim
h!0

x(s+ h)� x(s)

h

.

The forward Euler method for ODEs of the form (1) is given by

X

t+h

= X

t

+ hb(X
t

)

and for SDEs of the form (2) it is given by

X

t+h

= X

t

+ hb(X
t

) + ⇠

h

where 0 < h ⌧ 1 is the integration time step and the noise term ⇠ in the Euler
method for SDEs is modeled by a mean-zero Gaussian random variable.

For stochastic dynamical systems which evolve according to SDEs as in (2),
one can consider the probability that a system at some point x 2 Rd will be in
a set A ⇢ Rd after a short time h > 0:

P (X
t+h

2 A |X
t

= x) .

The associated transition probability density functions of these stochastic dy-
namical systems are Gaussian because the noise term in (2) is Gaussian.

What has been the generator matrix L in case of a Markov jump process is
an infinite-dimensional operator acting on a suitable Banach space. Specifically,

Lf(x0) = lim
t!0

E
x0 [f(Xt

)]� f(x0)

t

,

provided that the limit exists. Here f : Rn ! R is any measurable function and
E
x0 [·] denotes the expectation over all random paths of X

t

satisfying X0 = x0.
L is a second-order di↵erential operator if f is twice di↵erentiable.
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2 Day 2, 23.10.2012

Preliminaries from probability theory
Let (⌦, E ,P) be a probability space, where ⌦ is a set and E ✓ 2⌦ is a �-field

or �-algebra on ⌦, and P is a probability measure (i.e., P is a nonnegative,
countably additive measure on (⌦, E) with the property P(⌦) = 1).

2.1 Conditioning

Let A 2 E be a set of nonzero measure, i.e. P(A) > 0 and define E
A

to be the
set of all subsets of A which are elements of E , i.e.

E
A

:= {E ⇢ A | E 2 E} .

Definition 2.1 (Conditional probability, part I). For an event A and an event
E 2 E

A

, the conditional probability of E given A is

P(E|A) :=
P(E \A)

P(A)
.

Remark 2.2. Think of P
A

:= P(· |A) as a probability measure on the measurable
space (A, E

A

).

Given a set B 2 E , the characteristic or indicator function �

B

: ⌦ ! {0, 1}
satisfies

�

B

(x) =

(
1 x 2 B

0 x /2 B.

Definition 2.3 (Conditional expectation, part I). Let X : ⌦ ! R be a random
variable with finite expectation with respect to P. The conditional expectation
of X given an event A is

E(X|A) =
E [X�

A

]

P(A)
.

Remark 2.4. We have

E(X|A) =
1

P(A)

Z

A

XdP =

Z
XdP

A

.

Remark 2.5. Observe that P(E|A) = E [�
E

|A].

Up to this point we have only considered the case where A satisfies P(A) > 0.
We now consider the general case.

Definition 2.6 (Conditional expectation, part II). Let X : ⌦ ! R be an
integrable random variable with respect to P and let F ⇢ E be any sub-sigma
algebra of E. The conditional expectation of X given F is a random variable
Y := E [X|F ] with the following properties:

• Y is measurable with respect to F : 8B 2 B(R), Y �1(B) 2 F .

• We have Z

F

XdP =

Z

F

Y dP 8F 2 F .
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Remark 2.7. The second condition in the last definition amounts to the pro-
jection property as can be seen by noting that

E [X�

F

] =

Z

F

XdP =

Z

F

Y dP = E [Y �

F

] = E [E [X|F ]�
F

] .

By the Radon-Nikodym theorem [MS05], the conditional expectation exists and
is unique up to P-null sets.

Definition 2.8 (Conditional probability, part II). Define the conditional prob-
ability of an event E 2 E given A by P(E|A) := E [�

E

|A]

Exercise 2.9. Let X, Y : ⌦ ! R and scalars a, b 2 R. Prove the following
properties of the conditional expectation:

• (Linearity):
E [aX + bY |A] = aE [X|A] + bE [Y |A] .

• (Law of total expectation):

E [X] = E [X|A] + P(A) + E [X|Ac]P(Ac)

• (Law of total probability):

P(B) = P(B|A)P(A) + P(B|Ac)P(Ac).

Example 2.10. The following is a collection of standard examples.

• Gaussian random variables: Let X1, X2 be jointly Gaussian with distri-
bution N(µ,⌃), where

µ =

✓
E[X1]
E[X2]

◆
, ⌃ =

✓
a b

b c

◆

such that ⌃ is positive definite. The density of the distribution is

⇢(x) =
1p

det(2⇡⌃)
exp


�1

2
(x� µ)> ⌃ (x� µ)

�

(Ex.: Compute the distribution of X1 given that X2 = a for some a 2 R.)

• (Conditioning as coarse-graining): Let Z = {Z
i

}M
i=1 be a partition of ⌦,

i.e. ⌦ = [M

i=1Zi

with Z

i

\ Z

j

= ; and define

Y (!) =
MX

i=1

E [X |Z
i

]�
Zi(!).

Then Y = E [X|Z] is a conditional expectation (cf. Figure 3)

• (Exponential waiting times): exponential waiting times are random vari-
ables T : ⌦ ! [0,1) with the memoryless property:

P (T > s+ t |T > s) = P (T > t) .

This property is equivalent to the statement that T has an exponential
distribution, i.e. that P(T > t) = exp(��t) for a parameter value � > 0.
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Figure 3: Simulation of butane, coarse-grained into three states Z1, Z2, Z3.

2.2 Stochastic processes

Definition 2.11 (Stochastic process). A stochastic process X = {X
t

}
t2I

is
a collection of random variables on a probability space (⌦, E ,P) indexed by a
parameter t 2 I ✓ [0,1). We call X

• discrete in time if I ✓ N0

• continuous in time if I = [0, T ] for any T < 1.

How does one define probabilities for X? We provide a basic argument
to illustrate the possible di�culties in defining the probability of a stochastic
process in an unambiguous way. By definition of a stochastic process, X

t

=
X

t

(!) is measurable for every fixed t 2 I, but if one has an event of the form

E = {! 2 ⌦ | X
t

(!) 2 [a, b] 8t 2 I}

how does one define the probability of this event? If t is discrete, the �-additivity
of P saves us, together with the measurability of X

t

for every t. If, however, the
process is time-continuous, X

t

is defined only almost surely (a.s.) and we are
free to change X

t

on a set A
t

with P(A
t

) = 0. By this method we can change X
t

on A = [
t2I

A

t

, The problem now is that P(A) need not be equal to zero even
though P(A

t

) = 0 8t 2 I. Furthermore, P(E) may not be uniquely defined. So
what can we do? The solution to the question of how to define probabilities for
stochastic processes is to use finite-dimensional distributions or marginals.

Definition 2.12. (Finite dimensional distributions): Fix d 2 N, t1, . . . , td 2 I.
The finite-dimensional distributions of the stochastic process X for (t1, . . . , td)
are defined as

µ

t1,...,td(B) := P(Xtk
)k=1,...,d

(B) = P ({! 2 ⌦ |(X
t1(!), . . . , Xtd(!)) 2 B})

for B 2 B(Rd).
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Here and in the following we use the shorthand notation P
Y

:= P � Y �1 to
denote the push forward of P by the random variable Y .

Theorem 2.13. (Kolmogorov Extension Theorem): Fix d 2 N, t1, . . . , td 2 I,
and let µ

t1,...,td be a consistent family of finite-dimensional distributions, i.e.

• for any permutation ⇡ of (1, . . . , d),

µ

t1,...,td(B1 ⇥ . . . B

d

) = µ(t⇡(1),...,t⇡(d)
(B

⇡(1) ⇥ . . .⇥B

⇡(d))

• For t1, . . . , td+1 2 I, we have that

µ

t1,...,td+1(B1 ⇥ . . . B

d

⇥ R) = µ

t1,...,td(B1 ⇥ . . .⇥B

d

).

Then there exists a stochastic process X = (X
t

)
t2I

with µ

t1,...td as its finite-
dimensional distribution.

Remark 2.14. The Kolmogorov Extension Theorem does not guarantee unique-
ness, not even P-a.s. uniqueness, and, as we will see later on, such a kind of
uniqueness would not be a desirable property of a stochastic process.

Definition 2.15. (Filtration generated by a stochastic process X): Let F =
{F

t

}
t2I

with F
s

⇢ F
t

for s < t be a filtration generated by F
t

= � ({X
s

|s  t})
is called the filtration generated by X.

2.3 Markov processes

Definition 2.16. A stochastic process X is a Markov process if

P (X
t+s

2 A |F
s

) = P (X
t+s

2 A |X
s

) (3)

where

P (·|X
s

) := P (·|�(X
s

)) ,

P (E|�(X
s

)) := E [�
E

|�(X
s

)]

for some event E.

Remark 2.17. If I is discrete, then X is a Markov process if

P (X
n+1 2 A | X0 = x0, . . . , Xn

= x

n

) = P (X
n+1 2 A | X

n

= x

n

)

Example 2.18. Consider a Markov Chain (X
t

)
t2N0 on a continuous state space

S ⇢ R and let S be a �-algebra on S. Let the evolution of (X
t

)
t2N0 be described

by the transition kernel p(·, ·) : S ⇥ S ! [0, 1] which gives the single-step tran-
sition probabilities:

p(x,A) := P (X
t+1 2 A | X

t

= x)

=

Z

A

q(x, y)dy.

In the above, A 2 B(S) and q = dP
d�

is the density of the transition kernel
with respect to Lebesgue measure. The transition kernel has the property that

8



8x 2 S, p(x, ·) is a probability measure on S, while for every A 2 S, p(·, A) is
a measurable function on S.

For a concrete example, consider the Euler-Maruyama discretization of an
SDE for a fixed time step �t,

X

n+1 = X

n

+
p
�t⇠

n+1, X0 = 0,

where (⇠
i

)
i2N are independent, identically distributed (i.i.d) Gaussian N(0, 1)

random variables. The process (X
i

)
i2N is a Markov Chain on R. The transition

kernel p(x,A) has the Gaussian transition density

q(x, y) =
1p
2⇡�t

exp


�1

2

|y � x|2

�t

�
.

Thus, if X
n

= x, then the probability that X
n+1 2 A ⇢ R is given by

P (X
n+1 2 A|X

n

= x) =

Z

A

q(x, y)dy.
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