
Lecture notes for Numerik IVc - Numerics for

Stochastic Processes, Wintersemester 2012/2013.

Instructor: Prof. Carsten Hartmann

Scribe: H. Lie

Course outline

1. Probability theory

(a) Some basics: stochastic processes, conditional probabilities and ex-
pectations, Markov chains

References: [MS05,Kle06]

2. Stochastic di↵erential equations

(a) Brownian motion: properties of the paths, Strong Markov Property

References: [MS05,Øks03,Arn73]

(b) Stochastic integrals: Itô integrals, Itô calculus, Itô isometry

References: [MS05,Øks03,Arn73]

(c) SDEs: existence and uniqueness of solutions, numerical discretisa-
tion, applications from physics, biolopgy and finance

References: [Øks03,Arn73,KP92]

(d) Misc: Kolmogorov forward and backward PDEs, infinitesimal gen-
erators, semigroup theory, stopping times, invariant distributions,
Markov Chain Monte Carlo methods for PDEs and SDEs

References: [Øks03,Arn73,KP92]

3. Filtering theory (if time permits)

(a) Linear filtering: conditional expectation, best approximation, Kalman-
Bucy filter for SDEs

Reference: [Jaz07,Øks03]

4. Approximation of stochastic processes

(a) Spectral theory of Markov chains: infinitesimal generator, metasta-
bility, aggregation of Markov chains

References: [HM05,Sar11]

(b) Markov jump processes: applications from biology, physiocs and fi-
nance, Markov decision processes, control theory

References: [GHL09]
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Figure 1: Simulation of a butane molecule and its approximation by a 3-state
Markov chain (states in blue, green and yellow; solvent molecules not shown).

1 Day 1, 16.10.2012

1.1 Di↵erent levels of modelling

1.1.1 Time-discrete Markov chains

Time index set I is discrete, e.g. I ✓ N and state space S is countable or finite,
e.g. S = {s1, s2, s3} (see Figure 1). Key objects are transition probabilities.
For a state space S = {1, . . . , n}, the transition probabilities p

ij

satisfy

p

ij

= P (X
t+1 = j | X

t

= i)

and yield a row-stochastic matrix P = (p
ij

)
i,j2S

.

1.1.2 Markov jump processes

These are time-continuous, discrete state-space Markov chains. Time index set
I ✓ R+, S discrete. For a fixed time step h > 0, the transition probabilities are
given by (see Figure 2)

P (X
t+h

= s

j

|X
t

= s

i

) = h`

ij

+ o(h)

where L = (`
ij

)
i,j2S

and P

h

are matrices satisfying P

h

= exp (hL).
Note: the matrix L is row sum zero, i.e.

P
j

`

ij

= 0. The waiting times for
the Markov chain in any state s

i

are exponentially distributed in the sense that

P (X
t+s

= s

i

, s 2 [0, ⌧) |X
t

= s

i

) = exp (`
ii

⌧)
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Figure 2: Simulation of butane: typical time series of the central dihedral angle
(blue: metastable di↵usion process, red: Markov jump process)

and the ‘average waiting time’ is �`

ii

(by definition of the exponential distribu-
tion).

Note: the spectrum of the matrix P

h

is contained within the unit disk, i.e.
for every eigenvalue � of P

h

, |�|  1. This property is a consequence of P
h

being
row-stochastic, i.e. that

P
j

P

h,ij

= 1. Since P

h

= exp(hL) it follows that

�(P
h

) ⇢ D :=
�
x 2 R2 | |x|  1

 
, �(L) ⇢ C� = {y 2 C |Re(y)  0}

Example 1.1. Suppose one has a reversible reaction in which one has a large
collection of N molecules of the same substance. The molecules can be either
in state A or state B and the molecules can change between the two states. Let
k

+ denote the rate of the reaction in which molecules change from state A to B

and let k� denote the rate at which molecules change from state B to A.
For t > 0, consider the quantity

µ

A

i

(t) := P (number of molecules in state A at time t is i)

where i = {0, . . . , N}. One can define quantities µ

B

i

(t) in a similar way, and
one can construct balance laws for these quantities, e.g.

dµ

A

i

(t)

dt

= k

+
µ

A

i+1(t) + k

�
µ

A

i�1(t)� (k+ + k

�)µA

i

(t).

The above balance law can be written in vector notation using a tridiagonal
matrix L. By adding an initial condition one can obtain an initial value problem

dµ

A(t)

dt

= L

>
µ

A(t), µ

A(0) = µ0.

The solution of the initial value problem above is

µ

A(t) = µ0 exp
�
tL

>�
.
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1.1.3 Stochastic di↵erential equations (SDEs)

These are time-continuous, continuous state space Markov chains. SDEs may
be considered to be ordinary di↵erential equations (ODEs) with an additional
noise term (cf. Figure 2). Let b : Rn ! Rn be a smooth vector field and let x(t)
be a deterministic dynamical system governed by the vector field b(·). Then
x(t) evolves according to

dx

dt

= b(x), x(0) = x0. (1)

Now let (B
t

)
t>0 be Brownian motion in Rd, and let (X

t

)
t>0 be a dynamical

system in Rd which evolves according to the equation

dX

t

dt

= b(X
t

) +
dB

t

dt

. (2)

The additional term dBt
dt

represents ‘noise’, or random perturbations from the
environment, but is not well-defined because the paths of Brownian motion are
nowhere di↵erentiable. Therefore, one sometimes writes

dX

t

= b(X
t

)dt+ dB

t

,

which is shorthand for

X

t

= X0 +

Z
t

0
b(X

t

)dt+

Z
t

0
dB

t

.

The most common numerical integration method for SDEs is the forward
Euler method. If x is a C

1 function of time t, then

dx

dt

����
t=s

= lim
h!0

x(s+ h)� x(s)

h

.

The forward Euler method for ODEs of the form (1) is given by

X

t+h

= X

t

+ hb(X
t

)

and for SDEs of the form (2) it is given by

X

t+h

= X

t

+ hb(X
t

) + ⇠

h

where 0 < h ⌧ 1 is the integration time step and the noise term ⇠ in the Euler
method for SDEs is modeled by a mean-zero Gaussian random variable.

For stochastic dynamical systems which evolve according to SDEs as in (2),
one can consider the probability that a system at some point x 2 Rd will be in
a set A ⇢ Rd after a short time h > 0:

P (X
t+h

2 A |X
t

= x) .

The associated transition probability density functions of these stochastic dy-
namical systems are Gaussian because the noise term in (2) is Gaussian.

What has been the generator matrix L in case of a Markov jump process is
an infinite-dimensional operator acting on a suitable Banach space. Specifically,

Lf(x0) = lim
t!0

E
x0 [f(Xt

)]� f(x0)

t

,

provided that the limit exists. Here f : Rn ! R is any measurable function and
E
x0 [·] denotes the expectation over all random paths of X

t

satisfying X0 = x0.
L is a second-order di↵erential operator if f is twice di↵erentiable.
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2 Day 2, 23.10.2012

Preliminaries from probability theory
Let (⌦, E ,P) be a probability space, where ⌦ is a set and E ✓ 2⌦ is a �-field

or �-algebra on ⌦, and P is a probability measure (i.e., P is a nonnegative,
countably additive measure on (⌦, E) with the property P(⌦) = 1).

2.1 Conditioning

Let A 2 E be a set of nonzero measure, i.e. P(A) > 0 and define E
A

to be the
set of all subsets of A which are elements of E , i.e.

E
A

:= {E ⇢ A | E 2 E} .

Definition 2.1 (Conditional probability, part I). For an event A and an event
E 2 E

A

, the conditional probability of E given A is

P(E|A) :=
P(E \A)

P(A)
.

Remark 2.2. Think of P
A

:= P(· |A) as a probability measure on the measurable
space (A, E

A

).

Given a set B 2 E , the characteristic or indicator function �

B

: ⌦ ! {0, 1}
satisfies

�

B

(x) =

(
1 x 2 B

0 x /2 B.

Definition 2.3 (Conditional expectation, part I). Let X : ⌦ ! R be a random
variable with finite expectation with respect to P. The conditional expectation
of X given an event A is

E(X|A) =
E [X�

A

]

P(A)
.

Remark 2.4. We have

E(X|A) =
1

P(A)

Z

A

XdP =

Z
XdP

A

.

Remark 2.5. Observe that P(E|A) = E [�
E

|A].

Up to this point we have only considered the case where A satisfies P(A) > 0.
We now consider the general case.

Definition 2.6 (Conditional expectation, part II). Let X : ⌦ ! R be an
integrable random variable with respect to P and let F ⇢ E be any sub-sigma
algebra of E. The conditional expectation of X given F is a random variable
Y := E [X|F ] with the following properties:

• Y is measurable with respect to F : 8B 2 B(R), Y �1(B) 2 F .

• We have Z

F

XdP =

Z

F

Y dP 8F 2 F .
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Remark 2.7. The second condition in the last definition amounts to the pro-
jection property as can be seen by noting that

E [X�

F

] =

Z

F

XdP =

Z

F

Y dP = E [Y �

F

] = E [E [X|F ]�
F

] .

By the Radon-Nikodym theorem [MS05], the conditional expectation exists and
is unique up to P-null sets.

Definition 2.8 (Conditional probability, part II). Define the conditional prob-
ability of an event E 2 E given A by P(E|A) := E [�

E

|A]

Exercise 2.9. Let X, Y : ⌦ ! R and scalars a, b 2 R. Prove the following
properties of the conditional expectation:

• (Linearity):
E [aX + bY |A] = aE [X|A] + bE [Y |A] .

• (Law of total expectation):

E [X] = E [X|A] + P(A) + E [X|Ac]P(Ac)

• (Law of total probability):

P(B) = P(B|A)P(A) + P(B|Ac)P(Ac).

Example 2.10. The following is a collection of standard examples.

• Gaussian random variables: Let X1, X2 be jointly Gaussian with distri-
bution N(µ,⌃), where

µ =

✓
E[X1]
E[X2]

◆
, ⌃ =

✓
a b

b c

◆

such that ⌃ is positive definite. The density of the distribution is

⇢(x) =
1p

det(2⇡⌃)
exp


�1

2
(x� µ)> ⌃ (x� µ)

�

(Ex.: Compute the distribution of X1 given that X2 = a for some a 2 R.)

• (Conditioning as coarse-graining): Let Z = {Z
i

}M
i=1 be a partition of ⌦,

i.e. ⌦ = [M

i=1Zi

with Z

i

\ Z

j

= ; and define

Y (!) =
MX

i=1

E [X |Z
i

]�
Zi(!).

Then Y = E [X|Z] is a conditional expectation (cf. Figure 3)

• (Exponential waiting times): exponential waiting times are random vari-
ables T : ⌦ ! [0,1) with the memoryless property:

P (T > s+ t |T > s) = P (T > t) .

This property is equivalent to the statement that T has an exponential
distribution, i.e. that P(T > t) = exp(��t) for a parameter value � > 0.
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Figure 3: Simulation of butane, coarse-grained into three states Z1, Z2, Z3.

2.2 Stochastic processes

Definition 2.11 (Stochastic process). A stochastic process X = {X
t

}
t2I

is
a collection of random variables on a probability space (⌦, E ,P) indexed by a
parameter t 2 I ✓ [0,1). We call X

• discrete in time if I ✓ N0

• continuous in time if I = [0, T ] for any T < 1.

How does one define probabilities for X? We provide a basic argument
to illustrate the possible di�culties in defining the probability of a stochastic
process in an unambiguous way. By definition of a stochastic process, X

t

=
X

t

(!) is measurable for every fixed t 2 I, but if one has an event of the form

E = {! 2 ⌦ | X
t

(!) 2 [a, b] 8t 2 I}

how does one define the probability of this event? If t is discrete, the �-additivity
of P saves us, together with the measurability of X

t

for every t. If, however, the
process is time-continuous, X

t

is defined only almost surely (a.s.) and we are
free to change X

t

on a set A
t

with P(A
t

) = 0. By this method we can change X
t

on A = [
t2I

A

t

, The problem now is that P(A) need not be equal to zero even
though P(A

t

) = 0 8t 2 I. Furthermore, P(E) may not be uniquely defined. So
what can we do? The solution to the question of how to define probabilities for
stochastic processes is to use finite-dimensional distributions or marginals.

Definition 2.12. (Finite dimensional distributions): Fix d 2 N, t1, . . . , td 2 I.
The finite-dimensional distributions of the stochastic process X for (t1, . . . , td)
are defined as

µ

t1,...,td(B) := P(Xtk
)k=1,...,d

(B) = P ({! 2 ⌦ |(X
t1(!), . . . , Xtd(!)) 2 B})

for B 2 B(Rd).
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Here and in the following we use the shorthand notation P
Y

:= P � Y �1 to
denote the push forward of P by the random variable Y .

Theorem 2.13. (Kolmogorov Extension Theorem): Fix d 2 N, t1, . . . , td 2 I,
and let µ

t1,...,td be a consistent family of finite-dimensional distributions, i.e.

• for any permutation ⇡ of (1, . . . , d),

µ

t1,...,td(B1 ⇥ . . . B

d

) = µ(t⇡(1),...,t⇡(d)
(B

⇡(1) ⇥ . . .⇥B

⇡(d))

• For t1, . . . , td+1 2 I, we have that

µ

t1,...,td+1(B1 ⇥ . . . B

d

⇥ R) = µ

t1,...,td(B1 ⇥ . . .⇥B

d

).

Then there exists a stochastic process X = (X
t

)
t2I

with µ

t1,...td as its finite-
dimensional distribution.

Remark 2.14. The Kolmogorov Extension Theorem does not guarantee unique-
ness, not even P-a.s. uniqueness, and, as we will see later on, such a kind of
uniqueness would not be a desirable property of a stochastic process.

Definition 2.15. (Filtration generated by a stochastic process X): Let F =
{F

t

}
t2I

with F
s

⇢ F
t

for s < t be a filtration generated by F
t

= � ({X
s

|s  t})
is called the filtration generated by X.

2.3 Markov processes

Definition 2.16. A stochastic process X is a Markov process if

P (X
t+s

2 A |F
s

) = P (X
t+s

2 A |X
s

) (3)

where

P (·|X
s

) := P (·|�(X
s

)) ,

P (E|�(X
s

)) := E [�
E

|�(X
s

)]

for some event E.

Remark 2.17. If I is discrete, then X is a Markov process if

P (X
n+1 2 A | X0 = x0, . . . , Xn

= x

n

) = P (X
n+1 2 A | X

n

= x

n

)

Example 2.18. Consider a Markov Chain (X
t

)
t2N0 on a continuous state space

S ⇢ R and let S be a �-algebra on S. Let the evolution of (X
t

)
t2N0 be described

by the transition kernel p(·, ·) : S ⇥ S ! [0, 1] which gives the single-step tran-
sition probabilities:

p(x,A) := P (X
t+1 2 A | X

t

= x)

=

Z

A

q(x, y)dy.

In the above, A 2 B(S) and q = dP
d�

is the density of the transition kernel
with respect to Lebesgue measure. The transition kernel has the property that
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8x 2 S, p(x, ·) is a probability measure on S, while for every A 2 S, p(·, A) is
a measurable function on S.

For a concrete example, consider the Euler-Maruyama discretization of an
SDE for a fixed time step �t,

X

n+1 = X

n

+
p
�t⇠

n+1, X0 = 0,

where (⇠
i

)
i2N are independent, identically distributed (i.i.d) Gaussian N (0, 1)

random variables. The process (X
i

)
i2N is a Markov Chain on R. The transition

kernel p(x,A) has the Gaussian transition density

q(x, y) =
1p
2⇡�t

exp


�1

2

|y � x|2

�t

�
.

Thus, if X
n

= x, then the probability that X
n+1 2 A ⇢ R is given by

P (X
n+1 2 A|X

n

= x) =

Z

A

q(x, y)dy.

3 Day 3, 30.10.2012

Recapitulation:

• A stochastic process X = (X
t

)
t2I

is a collection of random variables X
t

:
⌦ ! R indexed by t 2 I (e.g. I = [0,1)) on some probability space
(⌦, E ,P).

• A filtration F := (F
t

)
t2I

is a collection of increasing sigma-algebras satis-
fying F

t

⇢ F
s

for t < s. A stochastic processX is said to be adapted to F if
(X

s

)
st

is F
t

-measurable. For example, if we define F
t

:= �(X
s

: s  t),
then X is adapted to F .

• The probability distribution of a random variable X is given in terms of
its finite dimensional distributions.

Example 3.1 (Continued from last week). Let I = N0 and consider a sequence
(X

n

)
n2N0 of random variables X

n

= X

�t

n

governed by the relation

X

�t

n+1 = X

�t

n

+
p
�t⇠

n+1, X

�t

0 = 0a.s. (4)

where �t > 0, and (⇠
k

)
k2N0 are i.i.d random variables with E [⇠

k

] = 0 and
E
⇥
⇠

2
k

⇤
= 1 (not necessarily Gaussian). To obtain a continuous-time stochastic

process, the values of the stochastic process on non-integer time values may be
obtained by linear interpolation (cf. Figure 4 below). We want to consider the
limiting behaviour of the stochastic process in the limit as �t goes to zero. Set
�t = t/N for a fixed terminal time t < 1 and let N ! 1 (�t ! 0). Then, by
the central limit theorem,

X

�t

N

=

r
t

N

NX

k=1

⇠

k

*

p
tZ (5)

where Z ⇠ N (0, 1), and “*” means “convergence in distribution”, i.e., weak
convergence of the induced probability measure; equivalently, the limiting ran-
dom variable is distributed according to N (0, t). In other words the limiting
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distribution of the random variable X

�t

N

for fixed t = N�t is the same as the
distribution of a centered Gaussian random variable with variance t. As this is
true for any t > 0, we can think of the limiting process as a continuous-time
Markov process B = (B

t

)
t>0 with Gaussian transition probabilities,

P (B
t+s

2 A |B
s

= x) =

Z

A

q

s,t

(x, y)dy

=
1p

2⇡|t� s|

Z

A

exp

✓
� |y � x|2

2|t� s|

◆
dy.

The stochastic process B is homogeneous or time-homogeneous because the
transition probability density q

s,t

(·, ·) does not depend on the actual values of
t and s, but only on their di↵erence, i.e.,

q

s,t

(·, ·) = q̃|s�t|(·, ·) (6)

0 0.2 0.4 0.6 0.8 1
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Figure 4: Sample paths of (X�t

n

)
n

for �t = 0.05, 0.002, 0.001 over the unit time
interval [0, 1], with piecewise constant interpolation. The lower right plot shows
the histogram (i.e., the unnormalized empirical distribution) of (X�t

1000) at time
t = 1, averaged over 10 000 independent realizations.

Remark 3.2. The choice of exponent 1/2 in
p
�t = (�t)1/2 in (5) is unique.

For (�t)↵ with ↵ 2 (0, 1
2 ), the limit of X�t

n

“explodes” in the sense that the
variance of the process blows up, i.e., E[(X�t

N

)2] ! 1 as N ! 1. On the other
hand, for (�t)↵ with ↵ > 1/2, X�t

N

! 0 in probability as N ! 1.
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3.1 Brownian motion

Brownian motion is named after the British botanist, Robert Brown (1773-
1858), who first observed the random motion of pollen particles suspended in
water. Einstein called the Brownian process “Zitterbewegung” in his 1905 paper,
Über die von der molekularkinetischen Theorie der Wärme gefordete Bewegung
von in ruhenden Flüssigkeiten suspendierten Teilchen. The Brownian motion is
a continuous-time stochastic process which is nowhere di↵erentiable. It is also a
martingale in the sense that on average, the particle stays in the same location
at which it was first observed. In other words, the best estimate of where the
particle will be after a time t > 0 is its initial location.

Definition 3.3. (Brownian motion) The stochastic process B = (B
t

)
t>0 with

B

t

2 R is called the 1-dimensional Brownian motion or the 1-dimensional
Wiener process if it has the following properties:

(i) B0 = 0 P-a.s.

(ii) B has independent increments, i.e., for all s < t, (B
t

� B

s

) is a random
variable which is independent of B

r

for 0  r  s.

(iii) B has stationary, Gaussian increments, i.e., for t > s we have1

B

t

�B

s

D

= B

t�s

(7a)

D

= N (0, t� s). (7b)

(iv) Trajectories of Brownian motion are continuous functions of time.

Definition 3.4. (Gaussian process) A 1-dimensional process G = (G
t

)
t>0 is

called a Gaussian process if for any collection (t1, . . . , tm) ⇢ I for arbitrary
m 2 N0, the random variable (G

t1 , . . . , Gtm) has a Gaussian distribution, i.e. it
has a density

f(g) =
1p

det(2⇡⌃)
exp


�1

2
(g � µ)>⌃�1(g � µ)

�
(8)

where g = (g1, . . . , gm), µ 2 Rm is a constant vector of means and ⌃ = ⌃> 2
Rm⇥m is a symmetric positive semi-definite matrix.

Remark 3.5. The Brownian motion process is a Gaussian process with the
vector of means µ = 0 and covariance matrix

⌃ =

0

BBBB@

t1 0 . . . 0

0 t2 � t1
. . .

...
...

. . .
. . . 0

0 . . . 0 t

m

� t

m�1

1

CCCCA
(9)

The covariance matrix is diagonal due to the independence of the increments of
Brownian motion.

1
The notation “X

D
= Y ” means “X has the same distribution as Y ”.
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Remark 3.6. Some further remarks are in order.

(a) Conditions (i)-(iii) define a consistent family of finite-dimensional dis-
tributions. Hence, the existence of the process B is guaranteed by the
Kolmogorov Extension Theorem.

(b) Conditions (i)-(iii) imply that E [B
t

] = 0 and E [B
t

B

s

] = min(t, s) 8s, t 2
R. The proof is left as an exercise.

(c) The discrete process (X�t

n

)
n2N0 converges in distribution to a Brownian

motion (B
t

)
t�0 if the time discrete is linearly interpolated between two suc-

cessive points. In other words, if we consider the continuous-time stochas-
tic processes (X�t

t

)
t>0 (which is obtained by linear interpolation between

the X

�t

N

) and B as random variables on the space of continuous trajec-
tories (C(R+) and B(C(R+))), then the process (X�t

t

)
t>0 converges in

distribution to B.

(d) We have that

E
⇥
(B

t

�B

s

)2
⇤
= E

⇥
(B

t�s

)2
⇤
by (7a) in Definition 3.3

= |t� s| by (7b) in Definition 3.3.

(e) Brownian motion enjoys the following scaling invariance, also known as
self-similarity of Brownian motion: for every t > 0 and ↵ > 0,

B

t

D

= ↵

�1/2
B

↵t

.

An alternative construction of Brownian motion

Observe that we have constructed Brownian motion by starting with the scaled
random walk process and using the Kolmogorov Extension Theorem. Now we
present an alternative method for constructing Brownian motion that is useful
for numerics, called the Karhunen-Loève expansion of Brownian motion. We will
consider this expansion for Brownian motion on the unit time interval [0, 1].

Let {⌘
k

}
k2N be a collection of independent, identically distributed (i.i.d)

Gaussian random variables distributed according to N (0, 1), and let {�
k

(t)}
k2N

be an orthonormal basis of

L

2([0, 1]) =

⇢
u : [0, 1] ! R :

Z 1

0
|u(t)|2dt < 1

�
. (10)

By construction, the basis functions satisfy

h�
i

,�

j

i =
Z 1

0
�

i

(t)�
j

(t)dt = �

ij

,

and we can represent any function 8f 2 L

2([0, 1]) by

f(t) =
X

k2N
↵

k

�

k

(t)

for ↵
k

= hf,�
k

i. We have the following result.
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Theorem 3.7. (Karhunen-Loève): The process (W
t

)0t1 defined by

W

t

=
X

k2N
⌘

k

Z
t

0
�

k

(s)ds (11)

is a Brownian motion.

Proof. We give only a sketch of the proof. For details, see the Appendix in
[MS05], or [KS91]). The key components of the proof are to show the following:

(i) The infinte sum which defines the Karhunen-Loève expansion is absolutely
convergent, uniformly on [0, 1].

(ii) It holds that E [W
t

] = 0 and E [W
t

W

s

] = min(s, t).
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