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’If people do not believe that mathematics is simple,
it is only because they do not realize how complicated life is.’

John v. Neumann

Hand in until: Tuesday, 20.11.12, 12:15pm

Discussion in class: Wednesday, 21.11.12, 10:15pm

Exercise 1. (Brownian motion)
Let (Bt)t≥0 be a 1-dimensional Brownian motion. Show, using the definition given in the lecture, the
following properties:

a) E(Bt) = 0 and E(BtBs) = min(s, t) ∀s, t ∈ R.

b) E[(Bt −Bs)2] = E(B2
t−s) = |t− s| ∀s, t ∈ R

c) Show that if Bt is a Brownian motion, then α−1/2Bαt is also a Brownian motion for any α > 0
(scale invariance).

d) Let λ1 be the Lebesgue-measure on R and let K ⊂ R be such that λ1(K) = 0. Show that the total
length of time that Bt spends in K is zero.1

Exercise 2. (Brownian Bridges)
Write a matlab script to generate M = 1000 samples of a Brownian bridge BBt = Wt − tW1, where Wt

is Brownian motion.

a) Use the forward integration method discussed in the lecture, i.e.

Y ∆t
n+1 = Y ∆t

n

(
1− ∆t

1− n∆t

)
+
√

∆tξn+1, Y ∆t
0 = 0

with ξn ∼ N(0, 1) iid. Use ∆t = 0.001. Plot a histogram of Y ∆t
1 and estimate P(Y ∆t

1 ∈ [−ε, ε]) for
ε = 0.01 and ε = 0.001, using your matlab program.

b) Now create M = 1000 samples of the KL-expansion of Brownian motion:

BBt =
√

2

m∑
k=1

ηk
sin(kπt)

kπ

where ηk ∼ N(0, 1) iid. For the number m of basis functions use m ∈ {1, 2, 10, 50, 100}. Plot the
variance E(BB2

t ) versus time t for t ∈ [0, 1] and compare with theoretical expectations. How does
E(BB2

t ) behave if m is changed?

1This result extends to the n-dimensional case. It demonstrates that the so-called Green measure associated with Bt is
absolutely continuous with respect to λn.



Exercise 3. (Quadratic Variation)
If Xt(·) : Ω→ R is a continuous stochastic process, then for p > 0 the p’th variation process is defined by

〈X,X〉(p)t (w) = lim
∆tk→0

∑
tk≤t

|Xtk+1
(w)−Xtk(w)|p (limit in probability)

where 0 = t1 < t2 < . . . < tn = t and ∆tk = tk+1 − tk. In particular, if p = 1 this process is called the
total variation process and if p = 2 it is called the quadratic variation process.

a) Let Bt be Brownian motion. Show that the quadratic variation is simply

〈B,B〉(2)
t (w) = t a.s.

Proceed as follows: Define ∆Bk = Btk+1
−Btk and put Y (t, w) =

∑
tk≤t(∆Bk(w))2. Show that

E
[(∑

tk≤t

(∆Bk)2 − t
)2]

= 2
∑
tk≤t

(∆tk)2

and deduce that Y (t, ·)→ t in L2(P ) as ∆tk →∞ (P is the probability measure of Bt).

b) Use a) to prove that a.a. paths of Brownian motion do not have a bounded total variation on [0, t]
(Hint: Try to show that a continuous real function with bounded total variation has zero quadratic
variation).


