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’If I were to awaken after having slept for a thousand years, my first question would be: Has the
Riemann hypothesis been proven?’

David Hilbert

Hand in until: Tuesday, 29.01.13, 12:15pm

Discussion in class: Wednesday, 30.01.13, 10:15pm

Exercise 1. (Continuous Semigroup)
Let (Xt)t≥0 be a Markov process with semigroup St : K → K generated by L : K → K. Show that
LSt = StL.

Exercise 2. (Commitor equation)
Let (Xt)t≥0 be an Itô process on R with generator L. Let A = [a1, a2] ⊂ R and B = [b1, b2] ⊂ R be
compact with b1 > a2, and let C = [a2, b1]. Let τA and τB be the first hitting times of A and B, and
define for any x ∈ C the commitor function

q(x) = P(τA > τB |X0 = x).

a) Show that the commitor function solves the commitor equation

Lq = 0 ∀x ∈ C, q|A = 1, q|B = 0.

(Hint: Rewrite q(x) as a conditional expectation, and use an appropriate Feynman-Kac formula or
Dynkin’s formula.)

b) Consider now the simple random walk on the lattice with spacing ∆x, this is a Markov chain with
transition probabilities P(Xn+1 = x ± ∆x|Xn = x) = 1

2 . Use the Markov property to show that
q(x) defined as above satisfies the boundary value problem

1

2
∆dq = 0 ∀x ∈ C, q|A = 1, q|B = 0

where ∆d is the finite-difference discretization of the Laplacian on the lattice with spacing ∆x.
Compare with (a). (Note that Ld = P − I = 1

2∆d is the generator of (Xn)n∈N.)

Exercise 3. (Metropolis Hastings Algorithm)
Let (Xt)t≥0 be an Itô process given by the SDE

dXt = −∇V (Xt)dt+
√

2εdBt (1)

with ε > 0 a real parameter, and the potential function V (x) = (x2 − 1)2.



a) Compute the invariant density ρ∞ up to the normalization constant.

b) One way to sample ρ∞ numerically is by using a long trajectory. The hope is that the system
converges to ρ∞ fast enough such that one eventually ends up sampling ρ∞. We want to try this
out. Numerically integrate (1) with X0 = −1 using forward Euler for ε = 0.15 with ∆t = 0.05. Use
N = 104, 105 and 106 steps. Create a histogram of all the positions visited and compare with (a)1.
What are the problems you observe? What happens if you change ∆t?

c) The Metropolis-Hastings algorithm can be used to sample distributions which are known up to
their normalization constant. The algorithm creates a Markov chain (Xn)n which has the chosen
distribution (here ρ∞) as invariant distribution. It consists of two steps:

(i) Proposal step: Starting from Xn, create a new state X̃n+1 drawn from some proposition
density T (Xn, X̃n+1).

(ii) Acceptance step: Compute the Metropolis-Hastings ratio

r(Xn, X̃n+1) =
T (X̃n+1, Xn)ρ∞(X̃n+1)

T (Xn, X̃n+1)ρ∞(Xn)

and accept the proposition with probability min
(

1, r(Xn, X̃n+1)
)

. In this case set Xn+1 =

X̃n+1, otherwise Xn+1 = Xn.

Implement the Metropolis-Hastings algorithm using the Euler discretization of (1) as the proposal
step. Convince yourself that

X̃n+1 ∼ N (Xn −∆t∇V (Xn), 2ε∆t)

follows and calculate T (Xn, X̃n+1). Use the result of (a) for the computation of r(Xn, X̃n+1). Use
the same parameters as in (b) for the implementation. Create a histogram of the positions Xn

and compare your results with (a) and (b). What do you observe? Use your algorithm to try out
different values for ∆t and try to find the optimal choice. What happens if ∆t becomes either much
larger or much smaller?

d) Repeat (c), but this time use X̃n+1 ∼ N (0, 0.52) for the proposal step.

1The comparison of two probability distributions µ1 and µ2 with densities ρ1 and ρ2 is best done by inspect-
ing d(µ1, µ2) where d(·, ·) is an appropriate distance function, two viable options are d(µ1, µ2) = ‖µ1 − µ2‖L1

or

d(µ1, µ2) = DKL(µ1||µ2) =
∫
log
(
ρ1(x)
ρ2(x)

)
ρ1(x)dx.


