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If T were to awaken after having slept for a thousand years, my first question would be: Has the
Riemann hypothesis been proven?’
David Hilbert

Hand in until: Tuesday, 29.01.13, 12:15pm

Discussion in class: Wednesday, 30.01.13, 10:15pm

Exercise 1. (Continuous Semigroup)
Let (X;);>0 be a Markov process with semigroup S; : K — K generated by L : K — K. Show that
LSy = S¢L.

Exercise 2. (Commitor equation)

Let (X;)i>0 be an It6 process on R with generator L. Let A = [a1,a2] C R and B = [b1,b2] C R be
compact with by > ag, and let C' = [ag,b1]. Let 74 and 75 be the first hitting times of A and B, and
define for any x € C the commitor function

q(z) = P(ra > 18| X0 = 2).
a) Show that the commitor function solves the commitor equation

Lg=0VzeC, qla=1, ¢q|g=0.

(Hint: Rewrite q(z) as a conditional expectation, and use an appropriate Feynman-Kac formula or
Dynkin’s formula.)

b) Consider now the simple random walk on the lattice with spacing Az, this is a Markov chain with

transition probabilities P(X,,11 = z + Az|X,, = z) = % Use the Markov property to show that

q(z) defined as above satisfies the boundary value problem

1
§Adq:0 VeeC, qla=1 ¢q|lp=0

where Ay is the finite-difference discretization of the Laplacian on the lattice with spacing Ax.
Compare with (a). (Note that Ly = P — I = A is the generator of (X,)nen.)

Exercise 3. (Metropolis Hastings Algorithm)
Let (X;)¢>0 be an Itd process given by the SDE

dX; = —VV(X,)dt + V2edB; (1)

with € > 0 a real parameter, and the potential function V(z) = (22 — 1)2.



a) Compute the invariant density p. up to the normalization constant.

b) One way to sample p, numerically is by using a long trajectory. The hope is that the system
converges to poo fast enough such that one eventually ends up sampling po,. We want to try this
out. Numerically integrate (1) with Xy = —1 using forward Euler for e = 0.15 with At = 0.05. Use
N =10%10° and 10 steps. Create a histogram of all the positions visited and compare with (a)!.
What are the problems you observe? What happens if you change At?

¢) The Metropolis-Hastings algorithm can be used to sample distributions which are known up to
their normalization constant. The algorithm creates a Markov chain (X,,), which has the chosen
distribution (here po,) as invariant distribution. It consists of two steps:

(i) Proposal step: Starting from X,, create a new state Xn-‘,—l drawn from some proposition
density T(X,,, Xn+t1)-

(ii) Acceptance step: Compute the Metropolis-Hastings ratio

o T Xn 7Xn 0o Xn
T(Xn,Xn+1) _ ( +1 - )P ( +1)
T(XnaXn+1)poo(Xn)

and accept the proposition with probability min (1, r(Xn,Xn+1)). In this case set X, 11 =

Xp+41, otherwise X,,4+1 = X,,.

Implement the Metropolis-Hastings algorithm using the Euler discretization of (1) as the proposal
step. Convince yourself that

Xnt+1 ~ N (X, — AtVV(X,,), 2eAt)

follows and calculate T'(X,,, X,+1). Use the result of (a) for the computation of r(X,, X,,1). Use
the same parameters as in (b) for the implementation. Create a histogram of the positions X,
and compare your results with (a) and (b). What do you observe? Use your algorithm to try out
different values for At and try to find the optimal choice. What happens if At becomes either much
larger or much smaller?

d) Repeat (c), but this time use Xpiq ~ N(0,0.52) for the proposal step.

1The comparison of two probability distributions p; and pe with densities p; and p2 is best done by inspect-
ing d(p1,p2) where d(-,-) is an appropriate distance function, two viable options are d(p1,p2) = |pu1 — pellr, or

(i1, 12) = Dicr(palu2) = [ log (455} ) o1 (x)de.



