Seminar Mathematical Control Theory

News

The seminar will start on 31 October, 2013.

When and where

Donnerstag 14.15-15.45 Uhr Arnimallee 6, Raum 009

Contact

Carsten Hartmann chartman@mi.fu-berlin.de Room 113, Arnimallee 6
Ralf Banisch ralfbanisch@zedat.fu-berlin.de Room 115, Arnimallee 6

General Information

Aims and scope

The Seminar will give a high-level overview of the basic concepts of control and systems theory. The course topics involve:

Requirements

Solid knowledge of analysis and differential equations is required. Interest in the modelling of real-world processes is helpful. The course will be held in English.

Presentation format

Blackboard or screen presentation of about 45-60 min. The references given below are meant as a suggestion; feel free to use whatever books or articles you find most accessible.

Schedule

Date Speaker Topic References Comments
31.10.2013 Alexandra Grigore Linear control systems I: controllability & observability [4, Secs. 2.1-2.4] arrange with LCS II
07.11.2013 Katharina Colditz Linear control systems II: bang-bang control [1, Sec. 10.3], [4, Sec. 2.5] arrange with LCS I
14.11.2013 Benjamin Samulowski Time-optimal control [4, Sec. 3]
21.11.2013 Alexander Fritz Pontryagin Maximum Principle I: derivation [4, Secs. 4.1-4.3]
09.01.2014 Adem Güngör Pontryagin Maximum Principle II: applications [4, Secs. 4.4-4.8]
16.01.2014 Oliver Zwingel Dynamic programming [4, Secs. 5.1-5.2] arrange with PMP III
23.01.2014 Kristine Kaiser Pontryagin Maximum Principle III: relation to dynamic programming [5, Sec. 5.3] arrange with DP
30.01.2014 Christoph Spiegel Differential games [4, Sec. 6]
06.02.2014 Tilman Mirschel Stochastic optimal control [4, Sec. 7]

References

[1] E. Sontag, Mathematical Control Theory: Deterministic Finite-Dimensional Systems. Springer-Verlag, New York, 1998.

[2] J. Zabczyk, Mathematical Control theory: An Introduction. Birkhäuser, Boston, 1995.

[3] W. Fleming and H. Soner, Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York, 2006.

[4] L. Evans, An Introduction to Mathematical Optimal Control Theory. Lecture Notes, U Berkeley, (available online).