Probeklausur Analysis II im WS 2013/2014

Teil I (Basiswissen)

Sofern nichts anderes angegeben ist, beziehen sich die Aussagen stets auf die natürliche Metrik d(x,y) = |x-y| bzw. den metrischen Raum $(\mathbb{R}, |\cdot|)$.

wahr	falsch	Aussage
		Jede lineare Funktion $l: \mathbb{R}^n \to \mathbb{R}$ lässt sich in Form eines Skalarproduktes als $l(x) = \langle \alpha, x \rangle$ darstellen, wobei $\alpha \in \mathbb{R}^n$ eindeutig bestimmt ist.
		Konvergiert eine Folge $(f_n)_n$ differenzierbarer Funktionen $f_n \colon [a,b] \to \mathbb{R}$ gleichmäßig gegen eine Funktion $f \colon [a,b] \to \mathbb{R}$, so ist f differenzierbar.
		Ist die Funktion f auf $[1,\infty)$ uneigentlich integrierbar, dann konvergiert die Reihe $\sum_{n=1}^{\infty} f(n)$ und es gilt $\sum_{n=1}^{\infty} f(n) = \int_{1}^{\infty} f(x) dx$.
		Die Stammfunktion einer Funktion $f \in C([a, b], \mathbb{R})$ ist eindeutig bestimmt.
		Ist $f: \mathbb{R}^n \to \mathbb{R}$ auf einer kompakten Teilmenge $K \subset \mathbb{R}^n$ Lipschitz-stetig mit Lipschitzkonstante $L < 1$, so hat f in K genau einen Fixpunkt.
		Die Hessematrix einer konvexen Funktion $f \colon \mathbb{R}^2 \to \mathbb{R}$ ist positiv semidefinit.
		Die stetige Funktion $f:[a,b]\times\mathbb{R}\to\mathbb{R}$ sei in der zweiten Variable Lipschitzstetig. Damit ist das AWP $y'(x)=f(x,y(x)),\ y(a)=y_0$ eindeutig lösbar.
		Jede konvergente Folge in $(CK(\mathbb{R}), \ \cdot\ _{\infty})$ ist eine Cauchyfolge.
		Regelfunktionen haben nur endlich viele Unstetigkeitsstellen.
		Sind die Funktionen $f, g: \mathbb{R} \to \mathbb{R}$, auf \mathbb{R} uneigentlich integrierbar, so ist auch $\lambda f + \mu g$ für alle $\lambda, \mu \in \mathbb{R}$ uneigentlich integrierbar.
		Stückweise stetige Funktionen $f\colon [a,b]\to \mathbb{R}$ lassen sich gleichmäßig durch Treppenfunktionen approximieren.

Teil II (Rechenaufgaben)

Bearbeiten Sie **genau** drei der folgenden Aufgaben 1-4. Bitte machen Sie kenntlich, für welche Aufgaben Sie sich entschieden haben.

Aufgabe 1

Berechnen Sie das Integral

$$\int_{2}^{3} \frac{1}{x^2 + 2x - 3} \, \mathrm{d}x.$$

Aufgabe 2

Bestimmen Sie die Lösung des homogenen Anfangswertproblems

$$x'(t) = \ln(t) x(t), \quad x(1) = x_0,$$

Welchen Wert muss $x_0 \in \mathbb{R}$ haben, damit x(t) zur Zeit t = 2 den Wert 1 annimmt?

Aufgabe 3

Gegeben ist die Funktion

$$f: \mathbb{R}^2 \to \mathbb{R}, \quad f(x,y) = \begin{cases} \sqrt{x^2 + y^2}, & y > 0, \\ x, & y = 0, \\ -\sqrt{x^2 + y^2}, & y < 0. \end{cases}$$

- a) Zeigen Sie, dass jede Richtungsableitung von f in (0,0) existiert.
- b) Bestimmen Sie die Richtungsableitung an (0,0) in Richtung v=(4,-3).

Aufgabe 4

Bestimmen Sie die Maxima und Minima der Funktion

$$f: \mathbb{R}^2 \to \mathbb{R}, \quad f(x,y) = 4x^2 - 3xy$$

auf der Kreisscheibe

$$K = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}.$$

Hinweis: Berechnen Sie zunächst die lokalen Extrema von f im Innern von K, und dann auf dem Rand (d.h. mit Nebenbedingung $x^2 + y^2 = 1$).

2

Teil III (Beweise)

Aufgabe 5

Gegeben sei das Anfangswertproblem

$$y'(t) = a(t)y(t), \quad y(0) = y_0$$

für eine gegebene stetige Funktion $a \colon \mathbb{R} \to \mathbb{R}$. Zeigen Sie, dass

$$y(t) = y_0 \exp\left\{ \int_0^t a(s) \, \mathrm{d}s \right\}$$

die eindeutige Lösung des Anfangswertproblems für alle $t \in [0,T]$ ist.

Aufgabe 6

Beweisen Sie die folgende Aussage: Ist $f:[a,b]\to\mathbb{R}$ stetig, dann existiert ein $\xi\in[a,b]$, so dass

$$\int_a^b f(x) dx = f(\xi)(b-a).$$