Fachbereich Mathematik und Informatik Freie Universität Berlin Prof. Dr. Carsten Gräser

Exercise 1 for the lecture FAST SOLVERS FOR NONSMOOTH PDES Winter term 2014 http://numerik.mi.fu-berlin.de/wiki/WS_2014/FastSolvers.php

Due: Thu, 2014-11-06, 10:15

Problem 1 (4 theory points) For a bounded open domain Ω define

$$C^{k}(\Omega) := \{ u : \Omega \to \mathbb{R} : u \text{ is } k \text{ times continuously differentiable} \},\$$

$$C^{k}(\overline{\Omega}) := \{ u \in C^{k}(\Omega) : D^{\alpha}u \text{ has a continuous extension to } \overline{\Omega} \text{ for } |\alpha| \le k \}.$$

Show that $(C^1([0,1]), \|\cdot\|_1)$ with $\|u\|_1 = \|u\|_{L^2} + \|u'\|_{L^2}$ is an incomplete normed space.

Problem 2 (4 theory points)

Two norms $\|\cdot\|_A$ and $\|\cdot\|_B$ on a normed vector space V are equivalent if there are constants $c_1, c_2 > 0$ with

$$c_1 \|v\|_A \le \|v\|_B \le c_2 \|v\|_A \qquad \forall v \in V.$$

Show that $\|v\|_{L^2(\Omega)} + \|\nabla v\|_{L^2(\Omega)}$ is equivalent to the norm $\|v\|_1$ on $H^1(\Omega)$ given by

$$||v||_1 = \sqrt{(v,v)_1}, \qquad (u,v)_1 = (u,v)_{L^2(\Omega)} + (\nabla u, \nabla v)_{L^2(\Omega)}$$

with constants independent on the dimension and Ω .

Problem 3 (4 theory points)

Let Ω be a bounded open domain with Lipschitz-boundary. Show that there is a constant C only depending on Ω such that

$$||u||_{L^{2}(\Omega)}^{2} \leq C \Big(||\nabla u||_{L^{2}(\Omega)}^{2} + (u, \mathbf{1})_{L^{2}(\Omega)}^{2} \Big)$$

where 1 is the constant function being 1 everywhere.

Please turn around!

Problem 4 (4 theory points)

- a) Show that the parallel directional correction method associated with the Euclidean unit vectors e_i is the Jacobi method.
- b) Show that the successive directional correction method associated with the Euclidean unit vectors e_i is the Gauß-Seidel method.