Fachbereich Mathematik und Informatik Freie Universität Berlin Prof. Dr. Carsten Gräser

Exercise 3 for the lecture

FAST SOLVERS FOR NONSMOOTH PDES

Winter term 2014

http://numerik.mi.fu-berlin.de/wiki/WS_2014/FastSolvers.php

Due: Thu, 2014-11-20, 10:15

Problem 1 (4 theory points) Let $\psi, \overline{\psi} \in H^1(\Omega)$ with $\psi \leq \overline{\psi}$. Show that the set

$$K = \{ v \in H^1(\Omega) \mid \psi \le v \le \overline{\psi} \text{ a.e.} \}$$

is convex and closed in $H^1(\Omega)$ and that its characteristic functional χ_K is convex, proper, and l.s.c.. Furthermore show that for $\underline{\psi} \neq \overline{\psi}$ the set K is unbounded and χ_K is not coercive.

Problem 2 (4 theory points)

Let H be a Hilbert space, $a(\cdot, \cdot) : H \times H \to \mathbb{R}$ a symmetric, elliptic bilinear form, $l \in H'$, and $K \subset H$ closed, convex, and nonempty. Show that the minimization problem

 $u \in K$: $J(u) \le J(v)$ $v \in K$

for $J(v) = \frac{1}{2}a(v, v) - l(v)$ has a unique solution.

Problem 3 (4 theory points)

Let Ω be a bounded polyhedral domain, \mathcal{T} a conforming triangulation of Ω by simplices, $\mathcal{S}_{\mathcal{T}}$ the space of piecewise linear finite element functions on \mathcal{T} and $I_{\mathcal{T}}: C(\Omega) \to \mathcal{S}_{\mathcal{T}}$ the nodal interpolation operator. For a convex, proper, l.s.c. functional $\Phi : \mathbb{R} \to \mathbb{R} \cup \{\infty\}$ define

$$\varphi: L^1(\Omega) \to \mathbb{R} \cup \{\infty\}, \qquad \varphi(v) = \int_{\Omega} \Phi(v(x)) \, dx.$$

- a) Show that φ is proper and convex.
- b) Show that the lumped approximation

$$\varphi_{\mathcal{T}}: \mathcal{S}_{\mathcal{T}} \to \mathbb{R} \cup \{\infty\}, \qquad \varphi_{\mathcal{T}}(v) = \int_{\Omega} I_{\mathcal{T}}(\Phi \circ v)(x) \, dx$$

is proper and convex and satisfied $\varphi(v) \leq \varphi_{\mathcal{T}}(v)$ for all $v \in \mathcal{S}_{\mathcal{T}}$.