Department of Mathematics \& Computer Science
Freie Universität Berlin
Prof. Dr. Ralf Kornhuber, Maren-Wanda Wolf

Exercise 1 for the lecture
Numerics II
WS 2014/15

Due: till Tuesday, 28. October

Problem 1

Consider the differential equation

$$
\begin{equation*}
x^{\prime}(t)=\lambda x(t)+\cos (t) e^{\lambda t}, \quad t>0 \tag{1}
\end{equation*}
$$

with a real parameter λ and initial value $x(0)=x_{0} \in \mathrm{R}$.
a) Rewrite equation (1) to an autonomous equation. (Hint: choose $y=(x, t)$).
b) Investigate existence and uniqueness of solutions with respect to λ. Do not use part c).
c) Find a closed representation of the solution x. How does $x(t)$ behave for $t \rightarrow \infty$ in dependence of λ and x_{0} ?
d) Calculate the Wronski matrix and give the pointwise condition number of the differential equation (1).

Problem 2 (6 PP)
a) Implement a matlab programm function $[x, t]=$ RungeKuttaEx (f, $x 0, I$, tau, b, A), which performs an explicit Runge-Kutta method, given by b and A from the Butcher scheme and the timestep tau, for the autonomous initial value problem

$$
x^{\prime}(t)=f(x(t)), \quad t \in(\mathrm{I}(1), \mathrm{I}(2)] \quad x(\mathrm{I}(1))=x_{0}
$$

with right hand side $f: \mathrm{R}^{d} \rightarrow \mathrm{R}^{d}$ and initial value $x_{0} \in \mathrm{R}^{d}$.
The return value x should contain the solution and t the associated points in time as a vector.
b) Calculate the solution of the autonomous version of (1) from problem 1 on the intervall $[0,10]$ with initial value $x_{0}=0$. Use Runge-Kutta- 4 , which is given by the Butcher scheme

$$
\begin{array}{cccc}
0 & & & \\
1 / 2 & 0 & & \\
0 & 1 / 2 & 0 & \\
0 & 0 & 1 & 0 \\
\hline 1 / 6 & 1 / 3 & 1 / 3 & 1 / 6 .
\end{array}
$$

Plot your solution for $\lambda=-10,-100,-1000$ and timesteps $\tau=0.001,0.1$. Additionally, for each λ plot the discretisation error over $\tau=0.001+k 0.001$ for $k=0, \ldots, 29$. Interprete your results.

Problem 3

Consider the following system of linear differential equations

$$
\begin{equation*}
x^{\prime}(t)=A x(t), \quad t>0 \tag{2}
\end{equation*}
$$

with the symmetric matrix

$$
A=\left(\begin{array}{ccc}
\frac{-1591}{25} & 0 & \frac{1212}{25} \\
0 & -1 & 0 \\
\frac{1212}{25} & 0 & \frac{-884}{25}
\end{array}\right)
$$

a) Calculate all solutions of (2).
b) Give the solutions for the initial values $x_{1}\left(t_{0}\right)=\left(\frac{3}{5}, 0, \frac{4}{5}\right)$ and $x_{2}\left(t_{0}\right)=\left(-\frac{4}{5}, 0, \frac{3}{5}\right)$ and sketch their trajectories.

