Department of Mathematics \& Computer Science
Freie Universität Berlin
Prof. Dr. Ralf Kornhuber, Maren-Wanda Wolf

Exercise 11 for the lecture
Numerics II
WS 2014/15

Due: till Tuesday, 27. January

Problem 1

Consider the the linear system

$$
\begin{equation*}
A U=b \tag{1}
\end{equation*}
$$

with the symmetric positive definite matrix $A \in \mathrm{R}^{n, n}$ and $b \in \mathrm{R}^{n}$.
a) Compute an upper bound for the convergence rate of the Jacobi method applied to the linear system (1) with the matrix A obtained by a finite difference discretization of the Laplace equation using a uniform grid on $[0,1] \times[0,1]$ given in the lecture.
b) Implement the Jacobi and the Gauß-Seidel methods in matlab as

```
function [u, uk] = Jacobi(A, b, u0, tol, uexact)
```

and

```
function [u, uk] = GaussSeidel(A, b, u0, tol, uexact).
```

$\mathrm{u}, \mathrm{uk}, \mathrm{A}, \mathrm{b}, \mathrm{u} 0$, tol, and uexact denote the last iterate, a vector containing all iterates, the system matrix, the right hand side, the initial iterate, the error tolerance, and the exact solution, respectively. The iteration should stop if the energy norm $\|\cdot\|_{A}=\langle A \cdot, \cdot\rangle^{0.5}$ of the error is smaller than the tolerance. Test your programm with the matrix of part a) and the right hand side $b=A U$ where U is the point wise evaluation of $\left(x_{1}-x_{1}^{2}\right)\left(x_{2}-x_{2}^{2}\right)$ for $\mathrm{u} 0=0$, tol $=10^{-8}$ and various choices of n. Plot the error over the number of iteration steps and compute the average convergence rate for each choice of n.

Problem 2

The symmetric Gauß-Seidel method for the solution of a linear system with a s.p.d. matrix is obtained by applying one normal Gauß-Seidel step and one Gauß-Seidel step with the components in reversed order alternatingly. Give the iteration matrix and the generated preconditioner of the symmetric Gauß-Seidel method and show that the preconditioner is s.p.d..

Problem 3

Show that

$$
\kappa\left(B^{-1} A\right) \leq \frac{\mu_{1}}{\mu_{0}}
$$

holds, if $B \in \mathrm{R}^{n \times n}$ is a prconditioner satisfying

$$
\mu_{0}(B x, x) \leq(A x, x) \leq \mu_{1}(B x, x) \quad \forall x \in \mathrm{R}^{n}
$$

for some $0 \leq \mu_{0}, \mu_{1} \in \mathrm{R}$.

Problem 4

a) Show that the parallel directional correction method associated with the Euclidean unit vectors e_{i} is the Jacobi method.
b) Show that the successive directional correction method associated with the Euclidean unit vectors e_{i} is the Gauß-Seidel method.

Problem 5

Assume that $A \in \mathrm{R}^{n, n}$ is s.p.d.. Prove the convergence of the gradient method

$$
x^{k+1}=x^{k}+\omega^{k} r^{k}, \quad \quad r^{k}=b-A x_{k}, \quad \quad \omega^{k}=\frac{\left\langle r^{k}, r^{k}\right\rangle}{\left\langle A r^{k}, r^{k}\right\rangle}
$$

