Department of Mathematics \& Computer Science
Freie Universität Berlin
Prof. Dr. Ralf Kornhuber, Maren-Wanda Wolf

Exercise 2 for the lecture
Numerics II
WS 2014/15

## Due: till Tuesday, 4. November

## Problem 1

Show that, the solution

$$
x(t)=\frac{x_{0} p \exp (p t)}{p+(\exp (p t)-1) k x_{0}}, \quad p, k>0
$$

of the bacteria population problem

$$
x^{\prime}=p x-k x^{2}, \quad t>0, \quad x(0)=x_{0}
$$

is not stable for $x_{0}=0$.

## Problem 2

a) Rewrite the system

$$
\begin{aligned}
& x_{1}^{\prime}=\alpha x_{1}-\beta x_{2} \\
& x_{2}^{\prime}=\beta x_{1}+\alpha x_{2}
\end{aligned}
$$

as a scalar complex ode.
b) Derive conditions on $\alpha, \beta$ for stability and asymptotic stability of the fixed point $x^{*}=0$.
c) Discuss the phase diagrams of solutions in the stable, asymptoticly stable and unstable case.

## Problem 3

Consider the following system of odes

$$
\begin{equation*}
x^{\prime}(t)=f(x(t)), \quad f(x)=\binom{1-\frac{1}{2}\left(x_{1}-x_{2}\right)^{2}}{\frac{1}{\sqrt{2}}\left(x_{1}+x_{2}\right)} . \tag{1}
\end{equation*}
$$

a) Calculate all fixed points of (1).
b) Discuss the (asymptotic) stability of these fixed points.

## Problem 4

Consider the following initial value problem

$$
\begin{equation*}
x^{\prime}(t)=A(t) x(t), \quad x(0)=(-\varepsilon, 0)^{T} \tag{2}
\end{equation*}
$$

with the matrix

$$
A(t)=\left(\begin{array}{cc}
-1+\frac{3}{2} \cos (t)^{2} & 1-\frac{3}{2} \cos (t) \sin (t) \\
-1-\frac{3}{2} \cos (t) \sin (t) & -1+\frac{3}{2} \sin (t)^{2}
\end{array}\right)
$$

a) Calculate the eigenvalues of $A(t)$.
b) How does the spectral abscissa behave for varying $t$ ? What do you expect concerning the (asymptotic) stability of solutions?
c) Determine the solution $x(t)$ of (2) explicitly. How does $x(t)$ behave for $t \rightarrow \infty$ ? (Hint: $x$ is a product of trigonometric functions and the exponential function.)

