Department of Mathematics \& Computer Science
Freie Universität Berlin
Prof. Dr. Ralf Kornhuber, Maren-Wanda Wolf

Exercise 3 for the lecture
 Numerics II
 WS 2014/15

Due: till Tuesday, 11. November

Problem 1

Consider the one-dimensional odes
a) $x^{\prime}=x-x^{2}$
b) $x^{\prime}=-x+4 x^{3}-x^{5}$
c) $x^{\prime}= \begin{cases}0, & x=0 \\ -x^{3} \sin \left(\frac{1}{x}\right), & x \neq 0 .\end{cases}$

Find all fixed points and decide wether they are stable or unstable?

Problem 2

Consider the following system of odes

$$
\begin{aligned}
x_{1}^{\prime} & =a\left(x_{1}^{2}+x_{2}^{2}\right) x-b\left(x_{1}^{2}+x_{2}^{2}\right) y \\
x_{2}^{\prime} & =a\left(x_{1}^{2}+x_{2}^{2}\right) y+b\left(x_{1}^{2}+x_{2}^{2}\right) x
\end{aligned}
$$

with differentiable functions $a, b: \mathrm{R} \rightarrow \mathrm{R}$.
a) For the special case $a(z)=-z$ and $b(z)=2$ find all fixedpoints and discuss their stability.
b) Transform the system to polar coordinates r, ϕ, with

$$
r^{2}=x_{1}^{2}+x_{2}^{2}, \quad \phi=\arctan \left(\frac{x_{1}}{x_{2}}\right)
$$

c) Does the transformation give any inside into the stability of fixedpoints?

Problem 3

We consider the system $x^{\prime}(t)=A x(t)$ with the fixed point $x^{*}=0$.
a) Let $x^{*}=0$ be asymptotically stable. Then there is a stepsize $\tau>0$ such that the linear recursion

$$
\begin{equation*}
x_{k+1}=(I+\tau A) x_{k}, \quad k=0, \ldots \tag{1}
\end{equation*}
$$

is asymptotically stable.
b) Let all eigenvalues of A be complex (not real) and let $x^{*}=0$ be stable and not asymptotically stable. Then the linear recursion is unstable for all $\tau>0$.
c) Illustrate the result of b) in the special case

$$
A=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

by computing explicit Euler approximations with a corresponding Matlab programm for the initial value $x_{\varepsilon}=(\varepsilon, \varepsilon)^{T}$ with $\varepsilon=10^{-2}, 10^{4}, 10^{6}$ and suitable final time T and stepsize $\tau>0$. What happens, if the implicit Euler method is used?

