Department of Mathematics \& Computer Science
Freie Universität Berlin
Prof. Dr. Ralf Kornhuber, Maren-Wanda Wolf

Exercise 8 for the lecture
 Numerics II
 WS 2014/15

Due: till Tuesday, 16. December

Problem 1

Consider the heat equation

$$
\begin{equation*}
\frac{d}{d t} u(x, t)=\Delta u(x, t) \tag{1}
\end{equation*}
$$

with $u:[a, b] \times \mathrm{R}_{0}^{+} \rightarrow \mathrm{R}$, the boundary conditions $u(a, t)=u(b, t)=0$ and the initial condition $u(x, 0)=u_{0}(x)$. Let there be an equidistant partition $a<x_{1}<\ldots<x_{n}<b$ of the interval $[a, b]$, i.e.,

$$
x_{i}=a+\frac{i(b-a)}{n+1}, \quad i=1, \ldots, n .
$$

The quantity $h=(b-a) /(n+1)$ is called the grid size.
a) Discretize (1) by central difference quotients at the points x_{i}. Write the spatially discrete problem as

$$
u_{h}^{\prime}(t)=-A_{h} u_{h}(t), \quad u_{h}(0)=u_{h, 0}
$$

with $u_{h}(t) \in \mathrm{R}^{n}$ and give $u_{h, 0}$ and the matrix A_{h}.
b) Show that the explicit Euler scheme is stable for $\tau \leq \frac{1}{2} h^{2}$. Show that this upper bound is asymptotically sharp for $h \rightarrow 0$.
c) Show that there is a functional $E_{h}: \mathrm{R}^{n} \rightarrow \mathrm{R}$ such that

$$
u_{h}^{\prime}(t)=-\nabla E_{h}\left(u_{h}(t)\right) .
$$

d) Show that E_{h} is strictly convex.

Problem 2 (4 PP)
The so called curve shortening flow

$$
\begin{aligned}
u_{t}-\frac{1}{\left|u_{x}\right|}\left(\frac{u_{x}}{\left|u_{x}\right|}\right)_{x} & =0 & & \text { in } I \times(0, T) \\
u(0, t) & =u(2 \pi, t) & & \text { in }(0, T) \\
u(\cdot, 0) & =u_{0}, & &
\end{aligned}
$$

is obtained as the gradient flow of the functional

$$
E(u)=\int_{I}\left|u_{x}\right| d x
$$

describing the length of a closed curve. Here $u: I \times(0, T) \rightarrow \mathrm{R}^{2}$ and $u(\cdot, t)$ describes the position of the curve in R^{2} at the time t parametrized over the interval $I=[0,2 \pi]$. To solve this problem numerically we use the space discrete approximation

$$
\begin{aligned}
U_{j}^{\prime} & =\frac{2}{\left|U_{j+1}-U_{j}\right|+\left|U_{j}-U_{j-1}\right|}\left(\frac{U_{j+1}-U_{j}}{\left|U_{j+1}-U_{j}\right|}-\frac{U_{j}-U_{j-1}}{\left|U_{j}-U_{j-1}\right|}\right) \\
U_{j} & =U_{j+N}
\end{aligned} \quad \text { for } j=-1,0,1
$$

with $U:(0, T) \rightarrow \mathrm{R}^{2 \times N}$. Notice that each U_{j} is a function, mapping $(0, T)$ to R^{2} and approximates the value of $u\left(x_{j}, t\right)$ with the equidistant space grid $\left(x_{j}\right)_{j=0, \ldots, N}$.
Following the ideas for problem 1 on exercise 6 a time discretization is given by

$$
\frac{1}{\tau}\left(U_{j}^{m+1}-U_{j}^{m}\right)=\frac{2}{\left(\left|U_{j+1}^{m}-U_{j}^{m}\right|+\left|U_{j}^{m}-U_{j-1}^{m}\right|\right)}\left(\frac{U_{j+1}^{m+1}-U_{j}^{m+1}}{\left|U_{j+1}^{m}-U_{j}^{m}\right|}-\frac{U_{j}^{m+1}-U_{j-1}^{m+1}}{\left|U_{j}^{m}-U_{j-1}^{m}\right|}\right)
$$

Implement the above iteration in MATLAB as function [u, t] = CurveShortening (N, tau, $T, u 0$), where N, tau, T, and $u 0$ denote the number of nodes in the space grid, the time step size, the final time and the initial value given as function from I to R^{2} respectively. Test your program with interesting initial values and appropriate parameters.

