9. Übung zur Vorlesung

Stochastik I

Wintersemester 2014/2015

Abgabe bis Freitag, 16.01.15, 12 Uhr

1. Aufgabe (Konvergenz von Zufallsvariablen, 4 Punkte)

Seien $(X_n)_{n\in\mathbb{N}}$ und $(Y_n)_{n\in\mathbb{N}}$ Folgen von Zufallsvariablen auf $(\Omega,\mathcal{E},\mathbb{P})$ mit $X_n\xrightarrow{\mathrm{f.s.}} X$ und $Y_n\xrightarrow{\mathrm{f.s.}} Y$.

- a) Zeigen Sie, dass $X_n + Y_n \xrightarrow{\text{f.s.}} X + Y$ gilt.
- b) Zeigen Sie: Dasselbe Resultat gilt, falls man überall "f.s." durch "i.W." ersetzt.
- c) Gilt dieses Resultat auch für Konvergenz in Verteilung?
- 2. Aufgabe (Konvergenz von Zufallsvariablen, 4 Punkte)

Es sei $(X_n)_{n\in\mathbb{N}}$ eine Folge reeller Zufallsvariablen mit $X_n \xrightarrow{i.V.} X$, wobei X fast sicher konstant sei. Zeigen Sie, dass X_n sogar in Wahrscheinlichkeit gegen X konvergiert.

3. Aufgabe (Grenzwertsätze, 4 Punkte)

Es sei X eine Zufallsvariable mit Werten in \mathbb{Z} , für die $\mathbb{E}(X)$ und $\mathrm{Var}(X)$ existieren. Weiter seien X_1, X_2, \ldots unabhängige Kopien von X und $S_n = X_1 + \ldots + X_n$. Zeigen Sie: Falls $\mathbb{E}(X) \neq 0$, dann ist $\mathbb{P}(S_n = 0 \text{ für höchstens endlich viele } n) = 1$.

4. Aufgabe (Parameterschätzung, 4 Punkte)

Eine Münze mit unbekannter Wahrscheinlichkeit 0 für Kopf wird geworfen, bis zum ersten Mal Kopf auftritt. Das Experiment wird <math>n mal wiederholt. Sei X_k die Anzahl der Würfe im k-ten Durchlauf. Zeigen Sie, dass $\bar{X}_n = (X_1 + \ldots + X_n)/n$ ein erwartungstreuer Schätzer für 1/p ist, d.h. dass gilt:

$$\mathbb{E}\left(\frac{X_1 + \ldots + X_n}{n}\right) = \frac{1}{p}$$