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Exercise 1. (Continuous semigroups III)
Let (K, ‖ · ‖) be a Banach space with norm ‖ · ‖. A strongly continuous contraction semigroup is a
one-parameter family of operators St : K → K such that

(i) S0 = Id and St+u = St ◦ Su for all t, u > 0,

(ii) ‖Stf − f‖ → 0 as t→ 0 (continuity),

(iii) ‖St‖ ≤ 1 for all t > 0 (contractivity).

Consider a real-valued, time-homogeneous diffusion process (Xt)t≥0 on a probability space (Ω, E , P ) with
smooth transition density p(t, x, ·), such that for all t ≥ 0

P (Xt ∈ B|X0 = x) =

∫
B

p(t, x, y)dy , B ∈ B(Rn) .

Show that Stf = Ex[f(Xt)] defines a strongly continuous semigroup on (C0(Rn), ‖ · ‖∞) where C0(Rn) is
the space of continuous functions with compact support and ‖ · ‖∞ is the supremum norm.

Exercise 2. (Fokker-Planck equation)
Let (Xt)t≥0 be a diffusion process on Rn with generator

L =
1

2
a(x) : ∇2 + b(x) · ∇ ,

where a(x) = σ(x)σ(x)T > 0 has uniformly bounded inverse for all x ∈ Rn and b, σ satisfy the usual
Lipschitz and growth conditions. Further let ρ(x, t) be the classical solution of the Fokker-Planck equation

∂ρ

∂t
=

1

2
∇2 : (aρ)−∇ · (bρ) , ρ(x, 0) = ρ0(x) .

(a) Show that
‖ρ0‖L1(Rn) = 1 =⇒ ‖ρ(·, t)‖L1(Rn) = 1 ∀t > 0 .

(b) Now suppose that Xt is confined to an open and bounded subset O ∈ Rn with smooth (e.g. C∞)
boundary ∂O. Modify the above Fokker-Planck equation, such that

‖ρ0‖L1(O) = 1 =⇒ ‖ρ(·, t)‖L1(O) = 1 ∀t > 0 .

i.e., such that the total probability is conserved, and justify your choice. (Hint: boundary conditions)



Exercise 3. (Invariant distribution)

Let Xt be the one-dimensional Ornstein-Uhlenbeck process

dXt = −µXtdt+ σdWt , X0 = x

with µ, σ > 0.

(a) Compute the stationary distribution of Xt and show that it is unique.

(b) Let X̂n be the Euler-Maruyama discretisation for a time step ∆t ∈ (0, 2/µ). Compute the distri-
bution of X̂n and its limit as n→∞. Compare with (a).

Exercise 4. (Heat equation)

Consider the scalar process Xt = X0 + Wt with initial conditions X0 that are uniformly distributed on
the interval [−1, 1] ⊂ R. Let ρ(·, t) be the law of Xt that is governed by the heat equation(

∂

∂t
− ∂2

∂x2

)
ρ(x, t) = 0 , ρ(·, 0) = U([−1, 1]) .

Let T > 0. We want to numerically compute the probability pB,T = P (XT ∈ B) for some measurable
set B ∈ B(R) and under the assumption X0 ∼ ρ(·, 0).

(a) Let T = 1 and B = [2, 3]. Estimate p[2,3],1 by Monte Carlo, based on sufficiently many realisations
of the process XT . Explain your choice of the simulation parameters.

(b) Calculate p[2,3],1 by solving the heat equation. Proceed as follows: As a first step, discretise the
heat equation in space using an equidistant grid on [−5, 5] with suitable boundary conditions, then
solve the resulting ODE using a suitable time stepping scheme. Compare with (a).


