Fachbereich Mathematik \& Informatik
Freie Universität Berlin
Prof. Dr. Ralf Kornhuber, Tobias Kies

> 5th Exercise for the Lecture
> NUMERICS IV
> WiSe 2015/2016
> http://numerik.mi.fu-berlin.de/wiki/WS_2015/NumerikIV.php

Discussion on: presumably Wed, December 9th, 2015
Please note the announcements on the website regarding organizational information on the lecture and the tutorial in the upcoming weeks.

Exercise 1 (representation of orthogonal projections)
Let $n \in \mathbb{N}, k \in\{0, \ldots, n\}$ and $V \subseteq \mathbb{R}^{n}$ a k-dimensional linear subspace. For any $x \in \mathbb{R}^{n}$ the (euclidean) orthogonal projection of x onto V is defined to be the solution of

$$
\begin{equation*}
\min _{y \in V}\|y-x\|, \tag{*}
\end{equation*}
$$

denoted by $P x$.
Now, suppose $a_{1}, \ldots, a_{k} \in \mathbb{R}^{n}$ form a basis of V. Show that $P x=A\left(A^{T} A\right)^{-1} A^{T} x$ for all $x \in \mathbb{R}^{n+1}$ where $A=\left(a_{1}, \ldots, a_{k}\right) \in \mathbb{R}^{n \times k}$.
Remark: You may use without proof that (*) admits a unique solution.

Exercise 2 (derivative and curvature vector's representation in parameterization)
Let $\Gamma \subseteq \mathbb{R}^{n+1}$ a C^{2}-hypersurface. We consider a local parameterization of Γ by a map $X \in C^{2}\left(V, \mathbb{R}^{n+1}\right.$ with $V \subseteq \mathbb{R}^{n}$ open.
The Riemannian metric is denoted by $G:=\left(g_{i j}\right)_{i, j \in\{1, \ldots, n\}}=\left(\frac{\partial X}{\partial \theta_{i}} \cdot \frac{\partial X}{\partial \theta_{j}}\right)_{i, j \in\{1, \ldots, n\}}$ and its inverse by $\left(g^{i j}\right)_{i, j \in\{1, \ldots, n\}}$. Furthermore, we define $g:=\operatorname{det}(G)$.
a) For $f \in C^{1}(U, \mathbb{R})$, where U is an open neighborhood of $X(V)$, show that

$$
\nabla_{\Gamma} f \circ X=\sum_{i, j=1}^{n} g^{i j} \frac{\partial(f \circ X)}{\partial \theta_{j}} \frac{\partial X}{\partial \theta_{i}} .
$$

b) For the case $n=1$, show that

$$
(H \circ X)(\nu \circ X)=-\frac{1}{\sqrt{g}} \sum_{i, j=1}^{n} \frac{\partial}{\partial \theta_{i}}\left(g^{i j} \sqrt{g} \frac{\partial X}{\partial \theta_{j}}\right) .
$$

Bonus: Prove this formula for arbitrary $n \in \mathbb{N}_{>0}$.

Have fun!

