Fachbereich Mathematik & Informatik Freie Universität Berlin Prof. Dr. Ralf Kornhuber, Tobias Kies

5th Exercise for the Lecture

NUMERICS IV

WiSe 2015/2016 http://numerik.mi.fu-berlin.de/wiki/WS_2015/NumerikIV.php

Discussion on: *presumably* Wed, December 9th, 2015 Please note the announcements on the website regarding organizational information on the lecture and the tutorial in the upcoming weeks.

Exercise 1 (representation of orthogonal projections) Let $n \in \mathbb{N}, k \in \{0, ..., n\}$ and $V \subseteq \mathbb{R}^n$ a k-dimensional linear subspace. For any $x \in \mathbb{R}^n$ the (euclidean) orthogonal projection of x onto V is defined to be the solution of

$$\min_{y \in V} \|y - x\|,\tag{*}$$

denoted by Px.

Now, suppose $a_1, \ldots, a_k \in \mathbb{R}^n$ form a basis of V. Show that $Px = A(A^T A)^{-1} A^T x$ for all $x \in \mathbb{R}^{n+1}$ where $A = (a_1, \ldots, a_k) \in \mathbb{R}^{n \times k}$.

Remark: You may use without proof that (*) admits a unique solution.

Exercise 2 (derivative and curvature vector's representation in parameterization) Let $\Gamma \subseteq \mathbb{R}^{n+1}$ a C^2 -hypersurface. We consider a local parameterization of Γ by a map $X \in C^2(V, \mathbb{R}^{n+1} \text{ with } V \subseteq \mathbb{R}^n \text{ open.}$

The Riemannian metric is denoted by $G := (g_{ij})_{i,j \in \{1,...,n\}} = \left(\frac{\partial X}{\partial \theta_i} \cdot \frac{\partial X}{\partial \theta_j}\right)_{i,j \in \{1,...,n\}}$ and its inverse by $(g^{ij})_{i,j \in \{1,...,n\}}$. Furthermore, we define $g := \det(G)$.

a) For $f \in C^1(U, \mathbb{R})$, where U is an open neighborhood of X(V), show that

$$\nabla_{\Gamma} f \circ X = \sum_{i,j=1}^{n} g^{ij} \frac{\partial (f \circ X)}{\partial \theta_j} \frac{\partial X}{\partial \theta_i}.$$

b) For the case n = 1, show that

$$(H \circ X)(\nu \circ X) = -\frac{1}{\sqrt{g}} \sum_{i,j=1}^{n} \frac{\partial}{\partial \theta_{i}} \left(g^{ij} \sqrt{g} \frac{\partial X}{\partial \theta_{j}} \right).$$

Bonus: Prove this formula for arbitrary $n \in \mathbb{N}_{>0}$.

Have fun!