Fachbereich Mathematik \& Informatik
Freie Universität Berlin
Prof. Dr. Ralf Kornhuber, Xingjian Zhang-Schneider
Exercise 2 for the lecture
Numerics II
WS 2019/2020
http://numerik.mi.fu-berlin.de/wiki/WS_2019/NumericsII.php

Due: Thursday, October 31th at the tutorial

1. Aufgabe (4 TP)

Let $A \in \mathbb{R}^{d \times d}$ and $x^{*}=0$ is a fixed point. Prove the following statements.
a) If $\nu(A)>0$, then x^{*} is not stable.
b) If $\nu(A) \leq 0$ and there exists a $\lambda \in \sigma(A)$ such that $\mathcal{R}(\lambda)=0$ but $r(\lambda)<s(\lambda)$, then x^{*} is not stable.
c) If $\nu(A) \leq 0$ and there exists a $\lambda \in \sigma(A)$ such that $\mathcal{R}(\lambda)=0$ and $r(\lambda)=s(\lambda)$, then x^{*} is not asymptotically stable.
2. Aufgabe (6 TP)

We consider the initial value problem

$$
x^{\prime}(t)=-\lambda x(t), t>0, \quad x(0)=x_{0}>0
$$

with $\lambda>0$.
a) Show that

$$
0 \leq x(t) \leq x_{0} \quad \forall t \geq 0
$$

b) Replacing the derivative by the central difference quotient of second order, we obtain the two-step method

$$
x_{k+1}=x_{k-1}+2 \tau x_{k}, \quad k=1, \ldots
$$

with given x_{0} and $x_{1}=x_{0}+\tau \lambda x_{0}$. Show that

$$
x_{k}=\alpha \mu_{1}^{k}+\beta \mu_{2}^{k}, \quad k=0, \ldots
$$

holds with $\mu_{1}=-\tau \lambda+\sqrt{\tau^{2} \lambda^{2}+1} \mu_{2}=-\tau \lambda-\sqrt{\tau^{2} \lambda^{2}+1}$ and α, β solving the linear system

$$
\alpha+\beta=x_{0}, \quad \alpha \mu_{1}+\beta \mu_{2}=x_{1} .
$$

c) Is it possible to find problem parameters $\lambda>0, x_{0}>0$, and discretization parameter $\tau>0$ that provide the same qualitative behavior as the exact solution, i.e.,

$$
0 \leq x_{k} \leq x_{0} \quad \forall k=0,1, \ldots ?
$$

What qualitative behavior of the approximate solution is occurring for $x_{0}=1$?
d) Numerically illustrate the theoretical results for $\lambda=1$ the intervall $[0,1]$, step size $\tau=1 / n$, and $n=10,100,1000$ by plotting the correponding approximations x_{k} over $t_{k}=k \tau$ for $k=1, \ldots, n$. What do you observe for decreasing τ ?
3. Aufgabe (4 TP)

Calculate the explicit solutions of the following linear differential equations
a)

$$
\dot{x}=\left(\begin{array}{ccc}
-3 & 0 & 2 \tag{1}\\
-1 & -3 & 5 \\
-1 & 0 & 0
\end{array}\right) x, \quad x(0)=\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)
$$

b)

$$
\dot{x}=\left(\begin{array}{ccc}
3 & 2 & 0 \tag{2}\\
0 & 3 & 0 \\
0 & 0 & -2
\end{array}\right) x, \quad x(0)=\left(\begin{array}{c}
1 \\
2 \\
1
\end{array}\right)
$$

Hint: Find appropriate transformations T, s.t. the system matrix is transformed into a block diagonal form.
4. Aufgabe (2 TP)

Let Φ^{t} be a flow on \mathbb{R}^{d}. Let x_{0} be stable in the following sense:

$$
\forall \varepsilon>0 \quad \exists \delta>0 \quad \forall x \in X \quad\left(\left|x-x_{0}\right|<\delta \quad \Rightarrow \quad \forall t>0 \quad\left|\Phi^{t}(x)-\Phi^{t}\left(x_{0}\right)\right|<\varepsilon\right)
$$

Prove or disprove: x_{0} is a fixpoint of the flow.

GENERAL REMARKS

You have to do the exercises in groups of up 3 people. Be prepared to demonstrate your solutions to theoretical problems at the given date in the tutorial. Solutions for programming problems have to be submitted via e-mail to xingjian@zedat.fu-berlin.de. with a subject starting by [NumericsII] and denoting all members of the group. Please follow the additional advise for programming exercises on the homepage.

