Freie Universität Berlin Prof. Dr. Ralf Kornhuber

Elliptic partial differential equations with highly oscillating or random coefficients WS 2020/2021

6. Exercise sheet, due February 17, 2021

Exercise 1.

Let $(\Omega, \mathcal{E}, \mathbb{P})$ be a probability space and let ξ be a random variable. Show that the triple $(I, \mathcal{E}_I, \mathbb{P}_I)$ defined by

$$I = \xi(\Omega) \subset \mathbb{R}$$

$$\mathcal{E}_I = B(I) = Bor(\mathbb{R}) \cap I$$

$$\mathbb{P}_I(A) = \mathbb{P}(\xi^{-1}(A))$$

is a probability space.

Exercise 2.

a) Show that independent random variables ξ and η are uncorrelated. b) Conversely, are there uncorrelated random variables ξ and η that are not independent?

Exercise 3.

a) Let v be a non-negative random variable. Prove Markov's inequality

$$\mathbb{P}(v \ge \alpha) \alpha \le \mathbb{E}[v], \qquad \forall \alpha \in \mathbb{R}.$$

b) Prove Chebyshev's inequality

$$\mathbb{P}\left(|v - \mathbb{E}[v]| \ge k\right) \le \frac{\operatorname{Var}(v)}{k^2}.$$

c) Prove the following 'Law of Large Numbers':

Let $v_i, i = 1, ..., n$ be independent identically distributed random variables and $w(\omega_1, ..., \omega_n) = \frac{1}{n} \sum_{i=1}^n v_i(\omega_i)$. Then $\mathbb{E}[w] = \mathbb{E}[v_i], i = 1, ..., n$ and for all $\varepsilon > 0$ there is a $C_{\varepsilon} > 0$ such that

$$\mathbb{P}\left(|w - \mathbb{E}[w]| \le C_{\varepsilon} n^{-1/2}\right) \ge 1 - \varepsilon.$$