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Summary. In his fundamental paper on general fixed-stepsize methods, 
Skeel [6] studied convergence properties, but left the existence of asymp- 
totic expansions as an open problem. In this paper we give a complete 
answer to this question. For the special cases of one-step and linear multi- 
step methods our proof is shorter than the published ones. 

Asymptotic expansions are the theoretical base for extrapolation meth- 
ods. 
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1. Introduction 

Let us consider the system of differential equations 

y' =f(x, y), y(xo) =Y0 (1.1) 

where f is sufficiently differentiable. Our aim is to find for the global error of 
general discretization methods an asymptotic expansion in powers of the 
stepsize. Henrici [5] has given the leading term and Gragg [3] has derived the 
full asymptotic expansion for one-step and linear multistep methods. The proof, 
which is very technical and long, can also be found in the book of Stetter [7]. 
Later, many new classes of methods have been studied, such as predictor- 
corrector methods, hybrid methods, (A,B)-methods of Butcher [2], multistep- 
multistage-multiderivative methods [4, 1], and similar methods for higher or- 
der ordinary differential equations . . . .  etc. All these methods, together with the 
classical ones, fall into the class of fixed-stepsize methods, analysed in the 
paper of Skeel [6]. There, Skeel has given the principal error term and has 
conjectured the existence of an asymptotic expansion. 

In Sect. 2 we first give a new proof of the asymptotic expansion of the 
global error of one-step methods. This case is simpler and shows the basic 
idea, which will be essential for the general case. In Sect. 3 we extend the proof 
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to strictly stable fixed-stepsize methods. For stable methods, which are not 
strictly stable, the proof is carried out in Sect. 4 and in the appendix. In Sect. 5 
we show that for symmetric fixed-stepsize methods h2-expansions of the global 
error can be obtained. 

2. One-Step Methods 

For the numerical solution of (1.1) we consider one-step methods of the form 

y,+ a = y ,  + hqb(x,, y , ,  h) (2.1) 

where we assume that �9 is sufficiently differentiable. In the situation x = x  o 
+nh  with n=0,  1, 2 ... .  and he[0, ho] we also write y(x,  h )=y , .  The existence of 
an asymptotic expansion of the global error is given by 

Theorem 1 (Gragg [3]). Assume the consistency condition 

r  y, O) = f (x, y) 

and the following expansion of  the local error 

y (x  + h) - y ( x ) -  hqb(x, y(x), h) =dp+ l(x) h p+ ~ + ... +dN+ ~(x) h N+ 1 + O(hN+ 2) 
(2.2) 

with p>= 1 and y(x)  the exact  solution of  (1.1). Then the global error has an 
asymptotic expansion of  the form 

y(x,  h) - y ( x ) =  ep(x) h p + . . .  + eN(x ) h N + E(x, h) h N + 1 (2.3) 

where 

, , ,  d f ,  ejtx ) = ~y[X, y(x)) ej(x) + inhomogenity (x), ej(Xo) = 0, 

and E(x, h) is bounded on compact sets. 

Proof. a) The idea is to subtract the first term ev(x ) h p from the conjectured 
expansion (2.3) and to consider 

y(x,  h) - ep ( x )  h p =." y* (x, h) (2.4) 

as the numerical solution of a new method 

Y,§ 1 -Y,- * + h ~ * ( x , , y * , h ) .  

By comparison with (2.1), one sees that the increment function for the new 
method must be given by 

�9 *(x, y, h) = cb(x, y + ep(x) h p, h) - (ep(x + h) - ep(x)) h p - ~ (2.5) 

Our task is thus to find a function ep(x), ep(xo)=O, such that the method with 
increment function 4"  is convergent of order p + 1. 
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b) Expanding the local error of the one-step method  4,* into powers of  h 
we obtain 

y(x + h) -y(x)  -h4"*(x,  y(x), h) 

[dv+ t(x) a + O(hP+ -~(x,y(x))ep(x)+e'p(x)]h "+ 2) 

04" (?f x where we have used ~-v(X,y, 0 )=~vv( ,y ) .  The  expression in square brackets  

vanishes if ep(x) is defined as the solution of 

Of e'p(x)=~y(X, y(x)) %(x)-d,+ ,(x), %(Xo) = 0. 

By the convergence theorem for one-step methods  (see e.g. Henrici [5]) the 
method 4"* is convergent  of order p + 1. 

c) If  N =p ,  the proof  of (2.3) is complete. Otherwise, the increment  function 
4"* satisfies the assumptions of the theorem with p replaced by p +  1. Therefore 
the construct ion of 4"**, 4"*** . . . .  etc. according to a) and b) can be repeated 
until p - - N  is reached. [ ]  

3. Multistep and General Fixed-Stepsize Methods (Strictly Stable Methods) 

In order  to apply the techniques of Sect. 2 to multistep methods,  it is useful to 
write them as a "one-s tep"  method  in a higher dimensional space. We there- 
fore follow the lines of Butcher [2] and Skeel [6] and consider methods,  which 
consist of: 

(1) a forward step procedure, i.e. a formula 

u, + a = Su, + h 4",(x., u,, h) (3.1 a) 

where S is a square matr ix;  the increment functions 4". are sufficiently differ- 
entiable. 

(II) a correct value function z(x, h), which is sufficiently smooth.  The  quan-  
tities z. = z(x., h) are to be approx imated  by u,, so that  the global error is given 
by u . - z , .  It is assumed that the exact solution y(x) of (1.1) can be recovered 
from z(x, h). 

(III) a smooth  starting procedure cb(h), which specifies the starting value 

u o = ~b (h). (3.1 b) 

(q~(h) approx imates  z o = z(x o, h)). 

Example. For  the special case of linear multistep methods  

k k 
Z ejy,+~=h Z fl~f,+J' ek = 1 

j=O j=O 
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we have 

i --(Zk- 1 --~k-2 "" - - i 0 i  0 
S =  10 1 

... 0 1 / 

�9 , (x ,u ,h)=el~ , (x ,u ,h) ,  el = (1 ,0  . . . . .  0) T , (3.2) 

where for u = (Vk_ 1 . . . .  , VO) T the value ip = ~,(x, u, h) is implicitly defined by 

k-1 ( k-1 ) 
~ =  ~ f l j f ( x+jh ,  vj)+flk f x + k h ,  h ~ -  ~ c~jvj . 

/=0 j=O 

The  correct  value function is given by 

z(x, h) = (y(x + (k - 1) h) . . . .  , y(x + h), y (x)) T. (3.3) 

In  this example  and in all methods  of practical  interest the increment  functions 
q~, do not  depend on n. We have int roduced this addit ional  dependence, 
because the iterative p roof  for the asymptot ic  expansion leads to methods  of 
this type. 

In order  to formulate  and prove  the asympto t ic  expansion of (3.1) we recall 
some definitions (cf. Skeel [6]). 

Me thod  (3.1) is called stable, if S" is bounded  uniformly for all n > 0 .  It is 
called strictly stable, if 

E = l im S" (3.4) 
n~oo 

exists. These concepts are equivalent to RC and M S R C  of Skeel I-6], respec- 
tively. We  assume in this section that  the me thod  (3.1) is strictly stable. The 
more  general case will be  treated in Sects. 4 and 5. 

The local error of (3.1) is defined by 

d o = z o - ~ ( h )  (3.5) 

d.+ 1 = z.+ a - S z .  -hcI) (x., z., h). 

The  iterative p roof  of Theo rem 2 below will lead us to increment  functions of 
the form 

q~,(x, u, h) = ~(x, u + h e,(h), h) + ft,(h) (3.6) 

J J - - O  " with smooth  4~ and  polynomials  ~., ft., whose coefficients satisfy ~., f t . -  (p). 
Here  p is some number  lying between the spectral  radius of S - E  and 1, i.e. 
p ( S - E ) < p < l .  By Tay lo r  expansion we obta in  for the local error of such 
methods  

d o = Y o + 7 1 h +  ... +7~hN +O(h ~+1) 

dn + i  = (do  (Xn) -'[- I~On) nt-"" "[- (tin +1 (Xn) -'~ (~Nn + 1) h N +1 + 0 (h N+ 2) 
for nh< const. (3.7) 
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where dj(x) are smooth and 6{=O(p"). This expansion (extension of (2.2)) is 
unique, because 6{~ 0  for n ~  or. 

Method (3.1) with q~. given by (3.6) is called consistent of  order p, if 

d ,=O(h  p) for nh<const .  

Edp(x) =0. (3.8) 

The conditions (3.8) clearly imply 

d,+l + E ( d , +  ... +do)=O(h p) for nh<const. ,  

which is equivalent to quasi-consistency of order p in the terminology of Skeel 
[6]. As a consequence of Theorem 3.8 of [6], strict stability and consistency of 
order p imply convergence of order p, i.e. 

u ~ - z , = O ( h  p) for nh<const .  

In the following theorem we again use the notation u(x ,h )=u ,  when x = x  o 
+nh. 

Theorem 2. Let the method (3.1) with ~ .  given by (3.6) be strictly stable and 
consistent of  order p(p> 1). Then the global error has an asymptotic expansion 
of the form 

u(x, h) - z ( x ,  h) = ep(x) h p + . . .  + eN(x) h u + E(x, h) h N + 1 (3.9) 

where ei(x) are given in the proof (cf. formula (3.21)) and E(x,h) is bounded 
uniformly in h~[0, h0] for x in compact intervals not containing x o. 

More precisely than (3.9), there is an expansion 

u - z  =(ep(x , )+~)hP+ ... +(eN(x,)+~)hN +F,(n,h)h N+a (3.10) 

where eJ, = O(p") and E(n, h) is bounded for nh< const. 

Remarks. a) We obtain from (3.10) and (3.9) 

E ( x . , h ) = E ( n , h ) + h  -1 e,N + h - 2 - N - -  1 " l - k 5  n . . .  + h P - N - I •  p , 

such that the remainder term E(x, h) is in general not uniformly bounded in h 
for x varying in an interval Ix 0, ~]. This is in contrast to the situation for one- 
step methods. However, if x is bounded away from x o, x > x o + 6  " ( 6 >0  fixed), 

the sequence e L goes to zero faster than any power of ~ 
n 

b) The special case N =p  is Theorem 6.1 of Skeel [6]. 

Proof. a) Similar as in the proof of Theorem 1 we construct a new method, 
which has as numerical solution 

u,* -- u, - (  e(x,) + e.) h p (3.11) 

for a given smooth function e(x) and sequence e, satisfying e,=O(p"). Such a 
method is given by 

* = S u ,  + h ~ , ( x , , u , , h ) ,  u*--~b*(h) (3,12) Un+ 1 
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where qS*(h) = qS(h)-(e(Xo)+%) h p and 

4)* (x, u, h) = ~,,(x,  u + (e (x) + e,,) h p, h) - (e (x + h) - S  e (x)) h p - 1 

--(e.+ ~ - Se.)  h p -  I. (3.13) 

By assumption,  this increment  function is again of the form (3.6), so that  its 
local error  has an expansion (3.7). We shall now determine e(x )  and e. in such 
a way that  the me thod  (3.12) is consistent of order  p4- 1. 

b) The  local error d* of (3.12) can be expanded 

d~ = z o - u~ = (Tp + e(Xo) + %) h" + O(h p + 1) 

d*+ 1 = z . +  1 - S z . -  h ~ * ( x . ,  z . ,  h) 

=d .+  1 "~ [(I - -S)  e(xn) + (e.+ ~ - Se.)] h p 

+ [ - G(x . ) (e (x . )  + ~.) + e'(x.)] h p+ 1 + O(hP+ 2). 
Here  

G(x) = TU-U (x, z(x, 0), 0), (3.14) 

which is independent  o f  n by (3.6). The  me thod  (3.12) is thus consistent of 
order p + 1, if 

(i) eo = - ~ p - e ( X o )  
(ii) dp(x) + ( I  - S) e (x )  + ~ + e, + 1 - Se ,  = 0 

(iii) E e ' ( x ) =  EG(x)  e (x )  - E d p +  l(x). 

We assume for the m o m e n t  that  the system (i)-(iii) can be solved for e(x)  and 
e,. This  will actually be  demonst ra ted  in par t  d) of  the proof,  By the con- 
vergence theorem (cf. Skeel [6] and the r emark  after formula  (3.8)) the method 
(3.12) is convergent  of order  p + 1. Hence 

u * - z , = O ( h  p+I) uniformly for nh_<_const., 

which yields the s ta tement  (3.10) for N = p .  
c) The me thod  (3.12) satisfies the assumpt ions  of  the theorem with p 

replaced by p + 1. As in T h e o r e m  1 an induct ion a rgument  yields the result. 
d) It  remains  to find a solution of the system (i)-(iii). Condi t ion (ii) is 

satisfied if 

(iia) dp(x) = (S - I ) ( e ( x )  + c) 

(iib) ~n+ 1 - c  = S ( e ,  - c ) - 6 ~  

hold for some constant  c. Using ( I - S + E ) - I ( I - S ) = ( I - E ) ,  formula (iia) is 
equivalent  to 

(I  - S  + E ) -  ~ dv(x ) = - ( I  - E ) ( e ( x )  + c). (3.15) 

F r o m  (i) we obta in  E o - c = - yp - (e(Xo) + c), so that  by (3.15) 

(I  - E ) (% - c) = - (I  - E) yp + (I  --  S + E ) -  ~ dp(xo). (3.16) 

Since Edp(xo)= O, this relat ion is satisfied if in part icular  

8 o - c = - ( I  - E )  7p + ( I  - S + E ) -  1 dp(xo)" (3.17) 
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The numbers  e , - e  are now determined by the recurrence relation (iib) 

e , - c = S " ( e o - C ) -  ~, S"-J  ~P 1 
j = l  

j=o j=n j=l  

where we have used S " = E + ( S - E )  n. If we put 

oo 
c = E  ~ 6 f (3.18) 

j=o 

the above defined sequence {en} satisfies % = O(p"), since E(e o - c ) = 0  by (3.17). 
In order to find e(x)  we define 

v ( x ) = E e ( x ) .  

With the help of formulas (3.18) and (3.15) we can recover e(x)  from v(x) by 

e (x) = v(x)  - (I - S + E ) -  1 dp(x). (3.19) 

Equation (iii) can now be rewritten as the differential equat ion 

v'(x) = EG(x)  [v (x) - (I - S + E ) -  1 dp(x)] - Ed v +1 (x), (3.20) 

and condit ion (i) yields the starting value v(x0)= - E ( T e + % ) .  This initial value 
problem can be solved for v(x) and we obtain e(x)  by (3.19). This function and 
the above defined e, represent a solution of (i)-(iii). []  

Remark.  a) It  follows f rom (3.18)-(3.20) that  the principal error term satisfies 

' I ep(x) = EG(x)  ee(X ) - Ed v + l(X) - ( - S + E ) -  1 dv(x ) (3.21) 

ep(Xo) = --  E T p  --  E ~ ~ + (I  - S + E ) -  1 dp(xo)" 
j=o 

b) Since ep+ l(x) is just the principal error term of method  (3.12), it satisfies 
the differential equat ion (3.21) with dj replaced by d*+l. By an induction 
argument we therefore have for j > p  

e'j(x) = EG(x)  e j(x) + inhomogeni ty  (x). (3.22) 

Let us illustrate the above definitions and results for strictly stable multi-  
step methods  (cf. Skeel [63). By (3.2) and (3.3) the local error (3.5) satisfies 

d,+ 1 = (~ - S~) y (x , )  + (~ + (I - S) a - e 1 tr(1)) hy ' (x , )  + O(h 2) 
k 

where ~ = (1 . . . . .  1) T, e 1 = (1, 0 . . . . .  0) r, a = (k - 1 . . . .  ,1, 0) T, or(l) = ~ fl) and y(x )  is 
j=o 

the exact solution of (1.1). Hence  the method is consistent of  order 1, if and 
only if d o = O ( h  ) and 
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S~=11 (i.e. ~ c~j=0) 
j= o (3.23) 

E ~ = E e l . a ( 1  ). 

Formula (3.2) together with (3.3) yields 

G(x)=~-~(x , z (x ,O) ,O)=e lbr~y(X ,y (x ) )  

where b=(flk_ ~ --flk~k_ 1 . . . .  ,flo--flkC%) T' The consistency conditions (3.23) im- 
ply E1 =~, br~ =a(1) and hence also 

Of 
EG(x) 11 = ~ ~y(X, y(x)). (3.24) 

For a p - t h  order multistep method the local error has the form 

d,+ 1 = el {6p+ l(x,) hp+ a + . . .  + 6N + I(X, ) hN+ l + o(hN+ 2)} 

where in particular 
0p+ I(X) = Cp+ i Y(P+ 1)(x) �9 

Since ~ is the unique eigenvector of S corresponding to the eigenvalue 1, Ev is 
for every v a multiple of/1. The solution of (3.21) is therefore given by 

%(x) = ~ %(x) 
where 

e'p(x) = ~]y (x, y(x)) ev(x) - C y(V + 1)(X) 

and C =  Cp+ l/a(1) is the error constant. 

4. Multistep and General Fixed-Stepsize Methods (Stable Methods) 

We demonstrate in this section, how the results and techniques of Sect. 3 can 
be extended to stable methods (3.1), which are not strictly stable. 

Stability implies that all eigenvalues of S have absolute value less or equal 
to 1 and those of modulus t, say 1 = ( 1 , ( 2 , . . . , ( / ,  are  simple roots of the 
minimal polynomial of S. Thus, S can be decomposed in the form 

S =  ~1E1 + ... (~Et+R (4.1) 

where E i are projectors and the spectral radius p(R)<l .  If the local error of 
method (3.1) has an expansion (3.7), we define consistency of  order p by (3.8t 
with E = E  1. 

For a multi-index m = ( m  1 . . . .  , ms) with m j > 0  we denote 

~m = ~],, . . . ." (7", Iml = m l  + "" +my 
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Theorem 3. Let the method (3.1) with ~)n=~ independent of n be stable and 
consistent of order p(p>= 1). Then the global error has an asymptotic expansion 
of the form 

un-zn=hP ~ ~"mepm(xn)+ ... +h N ~ ~"meNm(X,)+E(n,h)h~+l (4.2) 
Iml=l l <=lml<N-p+ l 

where ejm(x ) are smooth functions and E(n,h) is uniformly bounded for 
0 < 6 < n h < c o n s t .  

This theorem can be proved by extending the proof  of Theorem 2. Details 
are shown in the appendix. For  the most important  special case, where all 
(;(j = 1 . . . .  , l) are roots of unity, a simple proof  is given below. 

Corollary 4. Let the method (3.1) satisfy the assumptions of Theorem 3 and 
assume that ~ =  1 for j=  1 ... . .  I. Then we have with w=e 2~i/q 

q - 1  
w ns e P ... (4.3) Un--Zn= ~ { p~(xn) h + +eN~(xn)hS}+E(n,h)h N+I 

s = O  

where ejs(x ) and E(n,h) are as in Theorem 3. 

Proof. We study the method,  which is obtained by considering q consecutive 
steps of method  (3.1) as one large step. Putting fin=u,q+i(O<i<q-1 fixed), /~ 
= qh and 2n = x~ + n/~, this method becomes 

~+~ = Sq~ + / ~ ( 2 , ,  ~,/~) (4.4) 

with a suitably chosen 43. Method (4.4) is strictly stable, since by assumption 

lim (Sq) ~ = / ~ = E  a + . . .  +E t 
n ~ o o  

exists. A straight-forward calculation shows that the local error of (4.4) satisfies 

d o = 0 (h p) 
d,+ 1 = ( I + S +  ... +sq-1)dp(2~)~P+O(hP+l). 

Inserting (4.1) and using ~ = 1 we obtain 

E,(I + S +.. .  + S q- ~) dp(x) 
�9 l 1 - - f f q  q - 1  

= E ( I - E  +qE +j~= ~l-(j  ~j E.+j J~S" RJ)dp(x)=qEdp(x),, 

which vanishes by (3.8). Hence, also method (4.4) is consistent of order p. 
Applying Theorem 2 to method  (4.4) yields 

U n + i - - Z n  +i----e i (xn + i ) h P - k  . . .  q - e N i ( x n q + i ) h N - l - E i ( n , h ) h  l v+l  
q q P q 

where Ei(n ,h) has the desired boundedness-properties. If we define ejs(x) as 
solution of the Vandermonde- type system 
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q--1 

wgS ejs(x) = e j i ( x )  
s=O 

we obtain (4.2). This proves the corollary. [] 

5. Symmetric Fixed-Stepsize Methods and h2-Expansions 

For fixed-stepsize methods the correct value function z(x, h), the starting proce- 
dure ~b(h) and the increment function q~(x,u,h) are usually defined also for 
negative h (cf. (3.3)). We shall give here a precise meaning to the numerical 
solution u(x, h) for negative h and show that the results of the previous sections 
hold independent of the sign of h. This then leads in a natural way to 
asymptotic expansions in even powers of h. 

We consider the method 
U(Xo, h) = ~b(h) (5.1) 

u(x+h,h)=Su(x,h)+h~(x,u(x ,h) ,h)  for x=xo+nh .  

For positive h and n__>0 this is just the fixed-stepsize method (3.1) with an 
increment function independent of n. If we replace h by - h  in (5.1) we obtain 

u(x -h ,  - h )  = Su(x, -h)  -hq~(x, u(x, -h),  -h).  

For small h and nonsingular S this equation can be solved for u ( x , - h )  and 
yields 

U(Xo, - h ) =  ok(-h) (5.2) 

u(x, -h )  = S-  1 u(x -h ,  -h )  + hob(x, u(x -h ,  -h) ,  h). 

u(x, -h )  can thus be interpreted as the numerical solution of the inverse fixed. 
stepsize method (5.2), whose correct value function is z(x, -h).  

Our next aim is to show that the expansion (4.2) holds also for negative h 
with the same coefficients ej,,(x). For this it is necessary that also the inverse 
method (5.2) is convergent and hence stable. Therefore all eigenvalues of S 
must lie on the unit circle. With the notation of Theorem 3 we have 

Theorem 5. Assume (5.1) and (5.2) to be stable and the following consistency 
condition to hold for he[ - h  o, ho] 

z(x + h, h) - Sz(x, h ) -  hcI)(x, z(x, h), h) 

=dp(x) hP + dp+ ~ (x) hP+ a + .. . + dN + l (x) hN + t + O(h N + 2) 

E 1 d p ( X ) = 0  (5.3) 

with p > 1. Then the global error has an asymptotic expansion of the form 

u (x . , h ) - z ( x . , h )=h  p y' ~"mepm(x.)+... 
Iml = 1 

+ h ~ ~ ("" eNm (Xn) + E(x,, h) h ~ + 1 (5.4) 
l <-_lml<N-v+ l 
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where e~,,(x) are smooth funct ions and E(x ,h)  is uniformly bounded for  x = x  o 
+nh with Xo < X < , ~  and - h o  < h < h  o. 

Proof. a) If we replace h by - h  in (5.3) and then solve for z ( x , - h )  we obtain 
as in (5.2) 

z (x, - h) = S - 1 z (x - h, - h) + h ~ (x, z (x - h, - h), h) + S - 1 d p(x -- h) hV + 0 (h v + 1). 

Since E1 S - 1  :El,  this shows that the inverse method (5.2) is again consistent 
of order p. As it is stable by assumption, it is convergent. 

b) We now restrict ourselves to the case where all eigenvalues of S are roots 
of unity. Because of a), the verification of (5.4) is exactly the same as in 
Corollary 4 and Theorem 2, independent of the sign of h. It becomes even 
simpler, since s q : I  and 3~=0. This implies that ~, can be omitted in (Yll), 
and so the increment function of method (3.12) is again independent of n. For 
method (4.4) we thus arrive at an expansion of the form (3.10) with e~=0. The 
statement now follows as at the end of the proof of Corollary 4. 

In the general case (where some eigenvalue of S is not a root of unity) one 
has to apply Theorem 7 instead of Corollary 4. [] 

For many methods of practical interest the above result leads to expansions 
in even powers of h. The correct value function z (x ,h )  usually satisfies a 
symmetry relation 

z(x,  h) = Q z ( x  + qh, - h) (5.5) 

where Q is a square matrix and q an integer. 
Method (5.1) is called a symmetric f ixed-s tepsize  method, if the numerical 

solution u(x, h) satisfies the analogue of (5.5): 

u(x, h) = Qu(x  + qh, - h ) .  (5.6) 

In the following examples we denote the global error by 

e(x, h) = u(x, h) - z ( x ,  h) 

and its j-th component by ~j(x, h). 

Examples. a) One-step methods satisfy (5.5) with 

Q=identi ty and q=0.  

If the method is symmetric (see e.g. [7, 9]) then 

e ( x , h ) = e ( x ,  - h ) ,  

which, by Theorem 5, leads to an asymptotic expansion in even powers of h. 
b) For linear multistep methods (5.5) holds with (cf. (3.3)) 

0 1 
Q = ( I ' " 0 )  and q = k - 1 .  

If the coefficients of the method satisfy 

~_j= -~j, ~_j=~j 
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(such methods are commonly called symmetric [3, 7]), then a straight-forward 
calculation shows that the symmetry relation (5.6) holds for all X = X o + n h  , 
whenever it is satisfied for x = x  o. This imposes a condition on the starting 
procedure 4~(h). The relation (5.6) implies 

ek(X, -h )  = ~l(x -- (k - 1) h,h). 

Furthermore, for any multistep method we have 

~k(X, h) = e 1 (x - (k - 1) h, h) 
so that 

ek(X, h) = ek(X , --h) 

for symmetric methods. Therefore, Theorem 5 implies the existence of an 
agymptotic expansion in even powers of h. 

The best known example is the explicit midpoint rule 

Yn+ l - Y . -  l = 2 h f ( x . , Y . )  

with the starting procedure of Gragg 

4)(h) = (Yo + h f (xo, Yo), Yo) r" 

c) For Nordsieck methods (see e.g. Sect. 6.2 of [7]) the correct value 
function is given by 

h_ k y(~)(x)) r 
z ( x , h ) =  (y(x),  hy '(x)  . . . . .  k! 

and satisfies the relation (5.5) with 

Q = d i a g ( 1 , - 1 , . . . , ( - 1 )  k) and q=0. 

If such a method is symmetric, the j-th component of the global error satisfies 

ej(x, h) =( - 1)i e~(x, - h ) .  

Again, by Theorem 5, this leads to asymptotic expansions in even (or odd) 
powers of h. 

Remark.  For linear multistep methods the above results are due to Gragg [3] 
and Stetter [7]. The idea to work with u(x,  - h )  can be found in Bulirsch-Stoer 
[8]. 

6. Appendix: Proof of Theorem 3 

We consider methods (3.1) with increment functions 

�9 .(x, u, h) = ~(x, u + h~.(x, h), h) + ~.(x, h), (6.l) 
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where ~, and ft. are polynomials  in h, whose coefficients are of the form 

j ~ n m  j n m  j o~,(x) = ~, ~ a,,j(x) + a,, flJ.(x) = ~" ( bmj(x ) + b,. 
m m 

Here the summat ion  is over a finite number  of equivalence classes of multi-  
indices, where m and m' are identified, if (m= (,,,. Fur the rmore  we assume a{, b, 
=O(p") with p ( R ) < p < l  (cf. (4.1)). The local error of such a method  has a 
unique expansion of the form 

d 0 = ? o + ? a h +  ... + TNhU +O(h N+ x) 

... N+ 1 O(h u+ (6.2) dn+l=(E(nmdom(Xn)+6o)+ +(E(nmdu+,,m(Xn)d_t~n ) h N + l +  1) 
m ?n 

with 6J,=O(p"). For  the multi-index m = e i = ( 0  . . . . .  1 . . . . .  0) we also use the 
notation dj~(x) instead of djm(x ). 

A method  (3.1) with increment function (6.1) is called consistent of order p, 
if 

d,=O(h p) for n h < c o n s t .  

Eidpi(x)=O for i = 1  . . . . .  l. (6.3) 

If dpm(x)=O for m+e t - ( 1 , 0  . . . .  ,0) (cf. (3.6)), this definition coincides with (3.8), 
since E = El .  We have 

Theorem 6. A method (3.1) with increment function (6.1), which is stable and 
consistent of order p, is also convergent of order p. 

Proof. By L e m m a  3.5 of (6) it suffices to prove that  

~ S"-Jdj+l=O(h p) for n h < c o n s t .  
j=0 

Using (4.1) and  (6.3) this is satisfied, if 

((,,x-jE 1 +. . .  + (,~-JEt) ~ (j,n dpm(Xj) (6.4) 
j = 0  rn 

is uniformly bounded  in n. The  expression (6.4) can be written as 

( i E i ~ O  . with D , , -  (~'/(i)Sdpm(Xj). n i m  i m  _ _  

i = 1  m j = O  

If rn=e ~, we have im �9 E~D,, = 0  by (6.3). If m#:e', then q = ~ " / ~ : # l ,  and D ~  is 
uniformly bounded  in n, since by "Abel  summat ion"  

D: 1-t/n+1 dp,.(x.)-i-~= I 1 - q J + ~  
1--rl .= 1-rl (dpm(Xj+ O-dvm(Xj))" 

and dp,,,(x) is a smooth  function. []  
In order to extend the p roof  of Theorem 2, it is convenient  to formulate  the 

following general izat ion of Theorem 3: 
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Theorem 7. Let  the method (3.1) with 4 ,  given by (6.1) be stable and consistent 
o f  order p(p>= 1). Then the global error has an asymptotic expansion of the form 

un _ zn = h p y" (n,. ep,.(x,,) + . . .  + h s ~ (nm eN,,(x,) + E(n, h) h N +1 
m m 

where ej~,(x) and E(n, h) are as in Theorem 3. 

Proof. The p roof  is a long the lines of  that  of  Theorem 2. a) We consider a 
me thod  (3.12) with increment  function 

~*(x,  u, h) = cI) (x, u + (~, (,m e,,(x) + ~.) h v, h) 
m 

- ~ ~"~(~'~ e,.(x + h) - S era(x)) h e - 1 _ (e,, + ~ - Sen) h p - 1, 
m 

which has as numerical  solution 

rime X h e. 
rn  

b) The local error d* of this method  is given by 

d~ = (Tp + 2 em(Xo) + %) he + O( he + 1) 
m 

n m  m S d ~ + l = d . + , + [ ~ . ~  (~ I -  )em(X,,)+(a~+l-Se,,)]he 
m 

+ [_- Gtx,)(~, (,m e,,,(x,) + e,) + ~ ("" (r~ e~,(x.)] h e +' + O(h p + 2). 
m m 

It is thus consistent of order p + 1, if 

(i) t o = -- 7 p -  E em(Xo) 
m 

(iia) d e l ( x ) = ( S - I ) ( e 1 ( x ) +  c) 
(iib) e,+ l - c = S ( % - c ) - 6  p 
(iic) d p m ( x ) + ( ( m I - S ) e , , ( x ) = O  for r e . e l = ( 1 , 0 , . . . , 0 )  
(iii) ~iEe'i(x) = EiG(x ) ei(x ) - Eide+ 1, i(x) for i = 1 . . . . .  1. 

In part  d) of  the p roof  we shall show that  (i)-(iii) has a solution. With the 
era(x) and e~, obta ined in this way, the above method  is convergent  of  order p 
+ 1 by Theo rem 6. 

c) The  same induct ion a rgument  as in Theo rem 2 yields the result. 

d) For  m # e ~ = ( 0  . . . . .  1 . . . .  ,0) the matr ix  (~mI--S) is nonsingular,  and  e,,(x) 
can be compu ted  f rom (iic). 

Using the identity 

(~i I -- S ) =  ~i(I - E i ) ( I  - ~[- iS + El), 

formulas  (iia) and (iic) yield 

( I  - E ) ( e  i (X )  -4- C) = - -  (1 - -  S At- E )  - 1 d e  1 (x )  

(~(I-E~)er = - ( I - ( Z ~ S + E ~ ) - ' d v ~ ( x ) ,  i = 2  . . . . .  1. (65) 
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From (i) we obtain t o - c =  -yp-(el(Xo)+C ) -  ~ e,,(Xo), so that by (6.5) 
m * e  1 

(I -E)(g o --c)= - ( I  -E) yp+(I - S  +E) -t dpl(Xo) - ( I  -E) ~' em(Xo). 
m * e  t 

Because of Edp~(Xo)=O, this relation is satisfied, if in particular 

t o - c =  - ( I  -E) yp+(I -S+E)-  1 dpl(Xo ) -(I  -E)  ~, e,,,(Xo). 
m * e  I 

By (iib) 

(6.6) 

e -c=S"(~o-C ) -  ~. S"-J,~v - -  - j _  J. 
j = l  

= Y, ~7F4~o-C)-  Z ~71~, ~,-J-16~+R"(~o--C) 
i=1 i=1 j=O 

R n - -  j ,,~p n - . .  v j _ l + y ~ , E ,  ~ S  -16~. 
j = l  i=1 j = n  

Since E ( to -c )=O , the sequence (e,) satisfies e,=O(p"), if c=E ~ 6 p and 
j = O  

Ei(t o-c)=E` ~ ~TJ-I,3t]. (6.7) 
j=o  

Inserting (6.6) into (6.7) yields 

E, • e,,,(Xo)= -E,  yp+(I-S+E)-lEidpa(Xo)-E, ~ r  p. (6.8) 
m * e  1 j=O 

We now multiply the second relation of (6.5) with E k and obtain 

~Eke,(Xo)=-(I-~?lS+E,)-JEkdp,(Xo), k+i, i+l.  (6.9) 

Using this relation, Eiei(xo) can be computed from (6.8). Together with (6.5) we 
have thus obtained ei(xo) for i = 2  . . . .  , t. et(xo) is then given by (i). 

In order to find ei(x ) we define 

v~(x) = ~,E~ e~(x). 

With the help of (6.5) and observing that (! -E )  c =0 we have 

~iei(x)=vi(x)-(I-(71S+Ei)-tdpi(x), i=1  .... ,l. (6.10) 

Equation (iii) is now equivalent to 

v'~(x) = ~7 ~ E , 6 ( x ) {  v~(x) - ( !  - U ' S + E , ) -  ~ d~,(x)} -E,cl~ + ~. ~(x). 

This differential equation together with the initial value v~(xa)=(~E~e~(xa) can 
be solved for vi(x ) and we obtain ei(x) by (6.10). These functions ei(x) and the 
above defined e. represent a solution of (i)-(iii). [] 
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