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Summary. Generalized A(c~)-stable Runge-Kutta methods of order four with 
stepsize control are studied. The equations of condition for this class of semi- 
implicit methods are solved taking the truncation error into consideration. 
For application an A-stable and an A(89.3~ method with small 
truncation error are proposed and test results for 25 stiff initial value 
problems for different tolerances are discussed. 
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1. Introduction 

Initial value problems with strongly decreasing and increasing solution compo- 
nents are called stiff problems. They mainly appear in chemical kinetics, electric 
circuits and control theory. Usual integration routines as compared in Diekhoff 
et al. [6], Enright et al. [7] fail, because of the different growth of the solution 
components. New stability requirements like A-stability have been introduced to 
overcome these problems, see Dahlquist [-5], Grigorieff [10]. 

The present report is concerned with generalized Runge-Kutta methods of 
order four with three function evaluations per step. A stepsize control is 
implemented by embedding a third order method. One evaluation of the Jacobi 
matrix and the solution of a linear equation system of order n is necessary per 
step. An A-stable and an A(89.3~ algorithm are tested by solving 25 stiff 
initial value problems from Bedet, Enright, Hull [2] and Enright, Hull, Lindberg 
[8]. 

2. Generalized Runge-Kutta Methods 

ROW-Methods. The autonomous initial value problem: 

y'(x) =f(y(x)), Y(Xo) = Yo (2.1) 
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is considered in a n-dimensional real or complex space. A numerical solution of 
the following type is studied: 

yh(Xo +h) =Y0 + ~ ci ki (2.2) 
i=1  

(I-;~hf'(Yo))ki=h Yo+ ~ c~jkj +hf'(yo) ~ 7ijkj i=l, . . . ,s.  
j = l  j = l  

The coefficients 7, % ~ij, ~ij are real numbers, h denotes the stepsize, f'(Yo) the 
Jacobi-, I the n x n identity matrix and s the number of stages. The vectors k~ (i 
= 1,...,s) are computed by solving a system of linear equations of order n for s 
different right hand sides. 

Method (2.2) is called Rosenbrock-Wanner method, short ROW-method. 
The first who seemed to have studied similar formulas was Rosenbrock [18]. 
Wanner [20] introduced the coefficients ~u and proposed the theory of Butcher 
series [11] for derivation of the equations of condition. In [13] and Wolfbrandt 
[21] these methods are called modified Rosenbrock methods, in Norsett, 
Wolfbrandt [17] ROW-methods. 

For 7 = 7 u = 0  the ROW-methods reduce to usual Runge-Kutta methods. 
Therefore ROW-methods can be considered as generalized Runge-Kutta meth- 
ods. 

Stability Properties of ROW-Methods. To study the stability properties of ROW- 
methods, the scalar test differential equation is used: 

y'=2 y, y(Xo)=Yo; 2~lU, yoOl2, y: IR-~C 

Since f ' ( y ) = 2 ,  it holds: k~=Rz(z)yo, z=2h, where Ri(z ) are rational functions 
with denominator ( 1 - 7 z )  ~ and degree of numerator <i. Thus the numerical 
solution Yh is: 

Yn = R (z) Yo (2.3) 

~,, - , ,  P(z) 
with the stability function: R(z)= 1 + ~= 1Q~AzJ-~z)"  For a rational approxi- 

mation (2.3) of order p holds: 

Proposition (2.4). The stability function of a ROW-method with order p >__s is 
given by 

R(z) = (1 - y z) ~ - - - ~  k= o 

where 

" ( n + ~ ] x '  
/J~,)(x) = i ~ 0  ( - 1)i \ n - i ! i~- 
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stands for the generalized Laguerre polynomials, see Abramowitz, Stegun [1]. 
R(z) is a rational approximation to e ~ of order >s. 

Proof Applying Theorem 4 or Proposition 6 of Norsett, Wanner [16] one can 
show that P(z) is determined uniquely by Q(z). In our case the symmetric 
polynomials S, are: 

S,= (~)7'. It follows: 

e (z )=  s 
k=o i=o k i 

By means of the stability function one can characterize some stability properties 
very conveniently. 

One has stability at infinity, iff: 

lim IR(z)]= Ls(1) <1, where Ls:=/3 ~ (2.5) 
Z~O9 \ y ]  

For y > 0 a method (2.2) is A-stable, iff: 

IR(iy)l<l for yelR (2.6) 

or equivalently, iff the E-polynomial (see Norsett [15]) satisfies: 

E(y)=lQ(iy)12-1P(iy)lZ>O VyelR. (2.7) 

Embedded ROW-Methods. Error estimation and stepsize control is performed 
using two embedded methods. A ROW-method of order 4: 

Yh(Xo + h) = Yo + ~ ci ki (2.8) 
i = 1  

and a ROW-method of order 3: 

Yh(Xo+h)=yo+ ~ ~iki (g<s) 
i = 1  

are combined, where the coefficients 7, Y,j, cq~ ( i= l , . . . , s ,  j= l , . . . , i -1 )  and 
therefore the k, are the same for both formulas. The result of the fourth order 
method is taken as initial guess for the next step. The different orders of the two 
formulas lead to an estimation of the local truncation error EST of the third 
order method, in analogy to [6] and [7]. Using this information the following 
stepsize control for a given tolerance TOL is proposed. 

hnew:=0. 9 hold (TOL ~i- (2.9) 
\ EST / 

"if" hne w "greater" 1.5 hol a " then" hnew.' = 1.5 ho~ d 

"if" h.e w "less" 0.5 ho~ d " then"  h,~w:=0.5 ho~ d. 
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The safety factor 0.9 serves to keep hne w small enough to be accepted, if the 
truncation error in the next step is growing. The bounds 0.5 and 1.5 for the ratio 
of two steps are introduced to prevent a stepsize prediction, which is highly zig- 
zag in character. The values of the three constants are fixed by experience. EST 
is defined by 

n 
EST: = m a x  [Y i 'h (X~  - -  f ; i 'h (X~ 

i =  1 S i ' 

where S = ( S  1 . . . . .  S,,) T stands for a suitable scaling vector. 

Si := max(C, ly/,h(X/)[) i=  1, ..., n (2.10) 

C > 0  (in the following C = I )  

x o < xj < Xola, xj  represents the discrete abscissa. 

h,e w is accepted, if EST < TOL, otherwise formula (2.9) is applied once more 
with the value EST belonging to the failed stepsize prediction. This yields a 
smaller h . . . .  which may be successful. Repeated application of (2.9) is termina- 
ted, if hnew=<hmin. The minimal allowed stepsize hrnln depends on the relative 
machine precision and on the interval length. 

Usually one is interested in the relative precision of the achieved solution. In 
stiff differential equations, however, strongly decaying solution components 
occur, which are less interesting for the user. Therefore the mixed tolerance 
(2.10) is used. For the test set [8] it was sufficient to apply relative tolerance for 
solution components with [Yi,h[ ~ 1 and absolute tolerance for lYi,hl < 1. Obvious- 
ly the switching point for the mixed tolerance depends on the scaling factors of a 
problem. 

For the design of (3)4-methods it is important that the fourth order method 
possesses good stability properties and small truncation errors. In part 3 it is 
shown that these requirements cannot be satisfied simultaneously. Stability 
conditions for the third order can be chosen weakly. The third order method is 
not used for step continuation, therefore truncation error investigations are 
important. If R(z) and/~(z) denote the stability function (2.3) of order 3 and 4, 
respectively, then for the scalar test problem: 

y '=  2 y, Y(Xo)= Yo, 2 E ~  

one obtains: EST = I/~(z) - R ( z ) r  lYol/S 1. 
This is an acceptable error estimation for z e C - = { z O F . / R e ( z ) < O } ,  if 

sup 3/~(z)] is not too large. Finally it should be remarked, that the stepsize 
z ~ C -  

control formula (2.9) has been chosen, although it represents an error-per-unit- 
step for the fourth order method, because the local truncation error of the fourth 
order method is smaller than those of the third order method. 

3. Equations of Condition 

The simplified equations of condition are derived in [13, 14] applying the theory 
of Butcher series [11]. Equations up to order 5 for Yh are listed below 
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order 1 : 

order 2: 

order 3: 

order 4: 

order 5: 

Runge-Kutta Methods 

Z c i = l ,  

~. ci fli = � 8 9  Y = P:(Y), 

Z Ci flij flj _____1 __ 7 + 72 = P4(7), 

--g--~7---- P6(7), 

Z Ci flik 0~2 1 1 p = ~ - ~ 7  = 7(7), 

(for t runcat ion error  investigations) 

C O~ 4 - 1  
i i - - 5 ,  

Z cl a~ O~,k flk = ~ -- �88 7 = P1 o(Y), 
2CiO~ikflkO~ilfll=2~ 1 1 2 - ~ 7 + ~ - 7  =Ply(Y), 

2 1 Z Ci O~i O~ik O~k --T5, 

Z Ci(Xi O~ik flkl fll 1 1. --1 .2 = 

Zcif l ik  c~3 =T67-1 �88 7 = p14(7), 

f l l - - T 6 - - ~ 7 + ~ 7  = P15(7), 

~ = ~ - - g r ' - 5 ~  =P~6(7), 
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(3.1) 

(3.2) 

(3.3) 
(3.4) 

(3.5) 
(3.6) 
(3.7) 
(3.8) 

(3.9) 
(3.10) 
(3.11) 
(3.12) 
(3.13) 
(3.14) 
(3.15) 
(3.16) 
(3.17) Y.C, fl,kflk, fl, mBm-- ' 1 . - - 2  -- l ~g - -g  ~, -t- y --273 +74=P17(7)  

summat ion  indices i, j, k, l, m = 1 . . . .  , s, 

abbreviat ions 

flij = alj + 71j, ~ = 71i = 0 for i < j .  

Remark. The order  condit ions for Yh are obta ined  by replacing c i by ci and s by g 
in the above  equations.  They are denoted by (?). F r o m  (3.4) and (3.8) it follows 
immediately,  that  there are no methods  of order  4 with s = 2. A-stable methods  
of order  4 exist for s = 3 ,  see [13, 14]. There is no embedded  me thod  (2.8) with 
s =  3, ~_< 3, see L e m m a  (3.t8). Nevertheless,  one can construct  methods  with s = 4, 
g=3  and only three function evaluat ions  per step, see Proposi t ions  (3.19), (3.20). 
In [13, 14] it is shown that  there exists no five order  me thod  (2.2) with s - -4 .  

Lemma (3.18). There  exists no embedded  method  (2.8) with s = 3, ~_< 3. 

Proof g = 2  is impossible,  because the zeros of  P4(7) and Ps(7) are different. 
Let ~=3,  then (3.1), (3.3) and (3.4) for Yh and Yh define the same linear system 
for the q, resp. cl ( i=  1,2,3). Due  to (3.7) and (3.8) the system has a unique 
solution c~=~.  �9 

Proposition (3.19). There  exist embedded  methods  (2.8) with s = 4, g =  3 and three 
function evaluat ions per  step. The  paramete rs  7, ~2, aa, c4 and fl43 are free 
(except for special values leading to nonsolvable  linear systems). 

Proof Choosing ~4=~3,  with a,,1=c%1, a42=a32,  cq~3=0 , one gets a four stage 
method with only three function evaluations.  Equat ions  (3.1), (3.3), (3.5) determi-  
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ne Cl, C2, C3J-C4: 

~, ~ c2 = -~. 
~ a~/ c3+c4  �88 

From (3.8) follows: 1332/32 = Ps(Y)/c4/343 =" u. Equations (~1), (3."3), (374) define Ca, 
c2, Ca: 

0 c3 /4(7) 

(3.7) leads to" c 3/332 + c4/342 = (P7(7)- c4/343 a2)/c~2 = :  v. From (3.4) and (3."2) one 
obtains/32 and/33: 

v c,/3,31 
(e2 ,3 ,  

therefore/332,/342 are given by: 

%2 can be calculated from (3.6): ~32=P6(7)/((c3+c4)~3/32).  /34 follows from 
(3.2):/34 =(P2(7)-c2/32-c3/33)/c4 �9 # 
The remaining free parameters, except 7, can be chosen so that several equations 
of condition of order five are satisfied. The coefficient 7 determines essentially 
the stability properties, see (2.5), (2.6). c 4 has no influence on the truncation 
error, its value can be chosen to c3=0.  

Proposition (3.20). The free parameters of Proposition (3.19) are chosen as: 

~2 = 2 "y, 

51 I(Z 2 
~3- -1  1 

4 3-~2 

c 4 and/343 are solutions of the linear system: 

Then Eqs. (3.9), (3.10), (3.11), (3.14) and (3.15) are satisfied, too. It holds c3=0.  

P r o o f  For a2:#~ 3 the Eqs. (3.1), (3.3), (3.5) and (3.9) possess a solution, iff: 

(:: Iil det a2 a~ - = 0 .  
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Thus the choice of % implies (3.9). Due to the linear system it holds c 3 =0  and 
(3.14). The choice of % combined with (3.6) leads to the simplifying assump- 
tions: 

k = l  

Therefore (3.9) implies (3.t0), (3.11). (3.14) implies (3.15), see also [13], Proposi- 
tion 5, p. 20. �9 

Restriction. Evaluation of the righthand side of the differential equation merely 
in the integration interval requires: 

0=<~i_<1, i=2, . . . , s  (see [13, 14]). (3.21) 

In order to obtain good values of 7, the E-polynomials (2.7) for a method (2.8) of 
order four and three are calculated. Because of the special structure of R(z), see 
(2.4), it follows that R(z)=e=+O(z ;+ 1) 

IP(z)[ 2 = [ Q ( z ) l  2 leZ[ 2 + O(z v+ '). (3.22) 

For the imaginary axis z = iy, yelR, (3.22) reduces to polynomials of degree s in 
y2. Since lei*}= 1, the coefficients of y2k (0=<2k<p) are the same for IP(iy)l 2 and 
]Q(iy)l 2. Using (2.4) the E-polynomials can be calculated in a straightforward 
way. 

Lemma (3.23). The E-polynomials (2.7)/~ of order 3 and E of order 4 are: 

~(y) = ay 6 + 6yL 

E(y)=ay 8+by 6, 

with 

~=76 1 - L  3 = - ~ + 2  

6 = ~ - 7 + 3 7 2 - 2 7 3 ,  

a=yS ( I _ L 4  (~)2) = 1 7 
-5~6  ~ 18 

b = l  y+1772 32~ 3 t_1774875. �9 
72 3 6 3 

1372 . 2873 ,~ # - , 
4 ~ T  - l z 7  +67~' 

2572 1373 1737 a . 7675 
36 ~ 3 12 + ~  - - -2276+87v '  

Applying (2.5) and (2.7) the method of order 4 is 

A-stable, iff: a > 0 and b > 0, 

stable at infinity, iff: a > 0  

(analogue result for the method of order 3 with &/~). Computation of the zeros 
of a and b, resp. fi and ~ leads to the stability intervals of ~, listed in Table (3.24). 
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T a b l e  ( 3 . 2 4 ) .  Stability Intervals 

A-stability Stability at infinity, 
see also sketch (3.25) 

p=3 [�89 [0.15332,~] u [�89 oo[ 
p=4 [0.39434, 1.28057] [0.10567, 0.10727] 

u[0.20385, 0.25] ~[0.39434, oo[ 

The intervals of A-stability correspond to the recently published values of 
Burrage [4], Table 1. 

Sketch (3,25). Laguerre Polynomials L3 (~), L4 (~) 

14.00 - 

12.00 - 

10.00 - 

8.00 

6.00 

4.00 

2.00 

0.00 

-2 .00 

-4.00 

-6.00 

-8 .00  

-10.00 

-12. O0 

-14.00 

_ LJ1/~) 

i / 1_~(1/~,) 

For the choice of ?, beside stability considerations the truncation error was 
taken into account. For a method of order p the local truncation error is given 
by: 

Np+l 

h p+I ~ TiP+l~zf+lDf+l+O(hp+2), see [3]. 
i = 1  
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The numerical constants T~ p+ ~ are determined by the parameters of the method, 
D~ '+~ are the elementary differentials of order p+  1, e~'+~ the corresponding 
coefficients of Butcher and Nv+ ~ the number of trees of order p + l .  The 
following expression defines the error constant: 

6 = max [T/p + 11 (3.26) 

Two methods with different 7 and different stability properties are proposed. If 
both ROW-methods (2.8) should be A-stable, small values of 7 lead to small 
truncation errors. Therefore 7=0.395 is proposed. The hypotheses of Proposi- 
tion (3.20) give e3 < 0, contradicting restriction (3.21). In Table (3.27) a coefficient 
set for 7 = 0.395 with small truncation errors is listed, which don't satisfy (3.20). 

Table (3.27). G R K 4 A ,  ~=0 .395  

= 0.395 ~21 = -0 .767672395484  
Y31 = -0 .851675323742 ~32 = 0.522967289188 
741 = 0.288463109545 ~42 = 0.880214273381 E -  1 
~43 = -0 .337389840627 
~21 = 0.438 
~31= 0.796920457938 e32 = 0 . 7 3 0 7 9 5 4 2 0 6 1 5 E - 1  
cl = 0.346325833758 c2 = 0.285693175712 
c3 = 0.367980990530 
c 1 = 0.199293275701 c 2 = 0.482645235674 
c a = 0 .680614886256E-1  c 4 = 0.25 
6 N 0.942/5! for the me thod  of order  4, see (3.26) 
S N 1.08/4! for the me thod  of order  3, see (3.26) 

The second method is constructed according to Proposition (3.20). 

7e[0.10567,0.10727] produce great values of L3 (1). For 7e[0.20385, 0.25] 

L 3 ( ~ )  i s  s m a l t ,  s e e  s k e t c h  (3 .25 ) ,  a n d  t h e  s t a b i l i t y  r e g i o n  o f  t h e  f o u r t h  o r d e r  

method is very large. For 7=0.231 the fourth order method is A(89.3~ 
and the hypotheses of (3.20) and restriction (3.21) are satisfied. A coefficient set is 
listed in Table (3.28). A further related coefficient set with 7=0.22042841 can be 
found in Stoer, Bulirsch 1-19]. 

Table (3.28). G R K 4 T ,  ~=0.231  

7 = 0.231 Y21 = -0 .270629667752  
~al = 0.311254483294 T32 = 0 . 8 5 2 4 4 5 6 2 8 4 8 2 E - 2  
741 = 0.282816832044 Y42 = -0 .457959483281 
743 = -0 .111208333333 
%~ = 0.462 

% 1 = - 0 . 8 1 5 6 6 8 1 6 8 3 2 7 E - 1  ~a2 = 0.961775150166 
6~ = - 0 . 7 1 7 0 8 8 5 0 4 4 9 9  62 = 0 .177617912176E+1 
~3 = - 0 . 5 9 0 9 0 6 1 7 2 6 1 7 E -  1 
c~ = 0.217487371653 c 2 = 0.486229037990 
ca = 0. c 4 = 0.296283590357 
6 ~0 .199/5!  for the m e t h o d  of o rde r  4, see (3.26) 
8 ~0.461/4!  for the m e t h o d  of o rde r  3, see (3.26) 
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4. Numerical Implementation 

To compute the vectors ki (2.2), a linear system of order n for four right hand 
sides must be solved. In order to avoid matrix-vector multiplications, the 
equivalent form due to [21] is used: 

(I -- hYf'(Yo)) k,  = hf(Yo) , 

(I - h yf'(yo))(k2 + ~2, k l) = hf(Yo + a21 k 1) ~- ~21 k,,  

( I -  hyf'(yo))(k3 + (~3~ k~ + ~32 k2)) 

=hf(Yo+Ct31k~ +a32k2)+(~31kl + Y32k2), 

( I -  hvf'(yo))(k4 + (74~ k~ + ~42 k2 + ~43 k3)) 

=hf(Yo+a3a k~-]-a32 k2)-b (~41 k 1 "1- ~42 k2 -I- ~43 k3) 

where 

The Jacobian f'(Yo) is computed by difference approximation and should be 
replaced by an analytic version for very sensitive problems. The matrix 
(1 - h  7f'(Yo)) is decomposed by L U-factorization. Computation of the k i is equiva- 
lent to back substitutions. For large sparse systems the structure of the Jacobian 
is saved and the standard routine for LU-decomposition should be exchanged 
by subroutines for sparse systems. Both programs G R K 4 A  (3.27) and GRK4T 
(3.28) have a structure as simple as the RKF methods [6, 7] and can be easily 
implemented. Except for generation of the Jacobian no nested loops are neces- 
sary. The calling sequence is in accordance with [6, 7]. 

5. Test Examples 

The proposed methods were tested on 25 stiff differential equations [8]. The 
properties of the differential equations are only briefly described in the follow- 
ing, further informations can be found in [8]. The test set is divided into five 
classes: 

Class A: Linear with real eigenvalues 
Class B: Linear with non-real eigenvalues. 
Class C: Nonlinear coupling with real eigenvatues. 
Class D: Nonlinear with real eigenvalues. 
Class E: Nonlinear with non-real eigenvalues. 

The following abbreviations are used: 

TZ:  Total computing time in seconds to solve a problem. Computations 
were performed in FORTRAN single precision with a 38 bit mantissa 
(11 decimals) on the TR440 of the Leibniz Rechenzentrum der Bayeri- 
schen Akademie der Wissenschaften. 
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F CN: Number of function calls 
FJAC: Number of Jacobian evaluations. One evaluation of the Jacobian costs 

n function calls. 
TF: Total number of function calls: 

TF = FCN + n-FJ AC. 
LU: Number of LU-decompositions, equivalent to the number of steps. 
ERR: Maximum error of solution components at the end of the interval. The 

reference solution was computed by the procedure DRIVE with TOL 
= 1.E-8. DRIVE is the improved GEAR version from 13.1.1975, due to 
Gear 1-9] and Hindmarsh [12]. 

For all examples the initial stepsize H I =  1 . E - 3  and the stepsize control 
formula (2.9) were used. The test results are listed in Table (5.1) and Table (5.2). 

Both methods solve all examples reliably. G R K 4 A  looses precision in D5 
and E2. According to precision and fastness, G R K 4 T  is the superior method, in 
spite of its weaker stability conditions. Only in E4, the computing time of 
G R K 4 T  is enlarged. An overall summary for both methods and for three 
tolerances in accordance with [-8] is given in Table (5.3). 

Table (5.1). Stat is t ics  for each problem,  T O L  = 1, E - 4  

Problem G R K 4 A  

TZ L U  F C N  F J A C  TF  E R R  

A I 0.31 40 120 40 280 2.1 E - 7 
A2 1.22 53 155 49 596 4 . 8 E - 8  
A3 0.44 60 175 55 395 1.1 E - 6  
A4 2.01 74 213 65 863 1 . 5 E - 6  

B 1 1.44 183 542 176 1,246 4.0E - 5 
B 2 0.49 40 120 40 360 1.0E - 6 
B3 0.53 43 129 43 387 7.5E - 7  
B4 0.77 62 186 62 558 1 . 1 E - 6  
B 5 2.04 164 492 164 1,476 2.4 E - 6 

C 1 0.36 45 135 45 315 1.7 E - 7 
C2 0.37 43 129 43 301 3 . 6 E - 7  
C3 0.45 53 159 53 371 1.1 E -  5 
C4 1.04 122 366 122 854 9.7 E - 6 
C5 1.32 154 462 154 2,919 1.2E - 5 

O 1 1.19 207 621 207 1,242 5.9 E - 6 

D2 0.46 78 231 75 456 7.2E - 5 
D3 0.38 49 140 42 308 1.5E - 7 
D4 0.14 25 75 25 150 1 . 8 E - 5  
D5 0.11 28 84 28 140 8.7E - 3 
D6 0.13 23 69 23 138 1 . 8 E - 4  

E 1 1.81 288 552 184 1,288 3 . 4 E -  10 
E2 0.33 87 250 76 402 8.9E - 4  
E 3 0.48 80 238 78 472 4.7 E - 5 
E4 0.79 78 229 73 521 3.5E - 4  
E5 0.26 33 99 33 231 3 . 0 E -  8 
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Table (5.2). Statistics for each probem, TOL= 1.E-4  
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Problem GRK4T 

TZ LU FCN FJAC TF ERR 

A1 0.25 35 105 35 245 1.6E-6 
A2 1.14 51 148 46 562 2 .1E-7 
A3 0.39 54 157 49 353 2 .0E-  5 
A4 1.76 65 186 56 756 2.0E - 5 

B 1 1.24 160 473 153 1,085 3.6 E - 5 
B2 0.45 36 108 36 324 1.2E-6 
B 3 0.46 38 114 38 342 1.6E- 6 
B 4 0.66 53 159 53 477 2.0 E - 6 
B 5 1.75 140 420 140 1,260 1.7 E -  6 

C1 0.31 41 123 41 287 1.8E-7 
C2 0.32 39 117 39 273 5.0E- 8 
C 3 0.44 53 159 53 371 1.5 E - 7 
C4 0.94 111 333 111 777 1.2E - 7 
C5 1.19 135 405 135 945 4 .5E-  8 

D 1 1.29 231 658 196 1,246 3.8E- 6 
D2 0.36 63 182 56 350 4 .9E-5  
D3 0.45 57 164 50 364 3.2E- 8 
D4 0.14 25 75 25 150 2 .2E-6  
D5 0.14 36 104 32 168 1.1E-4 
D6 0.10 17 51 17 102 2 .9E-6  

E 1 1.08 168 327 109 763 3 .4E-  10 
E 2 0.35 96 268 76 420 4.6 E - 4 
E 3 0.49 89 249 71 462 4.3 E - 6 
E4 3.27 354 942 234 1,878 9 .7E-  5 
E5 0.27 33 99 33 231 3 .3E-8 

Table (5.3). Overall Summary 

Method TOL TZ LU FCN FJAC TF 

GRK 4 A 1.E - 2 9.39 1,066 2,851 927 6,859 
1 .E-4  18.85 2,112 5,971 1,955 14,428 
1 .E-  6 65.35 7,271 21,189 7,088 49,324 

GRK4T 1.E - 2 8.40 960 2,666 864 6,419 
I . E - 4  19.23 2,180 6,126 1,884 14,181 
1.E - 6 58.07 6,676 19,179 6,320 43,336 

B o t h  m e t h o d s  are  l ow o r d e r  m e t h o d s  a n d  w o r k  very  well  for  l ow to le rances .  

T h e y  s h o u l d  be  used  o n l y  for t o l e r a n c e s  b e t w e e n  1 . E - 2  a n d  1 . E - 4 .  

C o m p a r i s o n  wi th  D R I V E  [9, 12]: 

T h e  i m p r o v e d  G E A R  v e r s i o n  D R I V E  is a v a i l a b l e  to  t he  a u t h o r s .  C o m p u t i n g  

t i m e  a n d  f u n c t i o n  calls  for  all e x a m p l e s  are  l i s ted  in T a b l e  (5.4). 
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Table (5.4). Overall Summary for TOL = 1.E - 4 

G R K 4 A  G R K 4 T  DRIVE-GEAR 

All examples TZ 18.85 19.23 44.21 
TF 14,428 14,181 9,099 

All examples TZ 16.02 14.21 21.57 
except B5, E4 TF 12,43 t 11,043 5,423 
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Comparing computing time, both methods are competitive with DRIVE, 
although the number of function calls TF is enlarged by a factor two. DRIVE 
runs very efficient in the classes D and E, but produces heavy difficulties in B5, 
where precision is lost and computing time reaches 21.23 seconds. The great 
number of evaluations of the Jacobian and LU-decompositions in GRK4 A and 
GRK4T are disadvantageous for large complicated systems, which are not 
included in the test set [8]. 

6. Application of GRK4A and GRK4T 
to the restricted Three Body Problem 

To give some information how both methods will work for non-stiff differential 
equations, the restricted Three Body Problem (earth-moon-spaceship) tested in 
Bulirsch, Stoer [3] and [7] was solved. Results for the non-stiff differential 
equation solvers DIFSY1, VOAS, RKF7, and RKF4 from [6] together with 
GRK4A and GRK4T are listed in Table (6.1). 

Table (6.1). Three Body Problem, T O L =  1 .E-4 ,  H I =  1.E--3 

Statistics DIFSY1 VOAS RKF7 RKF4  G R K 4 A  G R K 4 T  

TZ 1.11 2.36 1.28 1.44 1.89 2.48 
TF 1,215 669 1,233 1,398 1,048 1,339 

This difficult example, which requires a robust and reliable stepsize controll, 
was solved precisely by both methods. The more complicated structure of 
GRK4A and G R K 4 T  enlarged the computing time by a factor 1.5, although 
the number of function calls is comparable to the related routine RKF 4. 

Conclusion 

With GRK4A and GRK4T two reliable, fast and precise algorithms for the 
numerical solution of stiff systems of ordinary differential equations are avail- 
able. The loworder methods should be applied for low tolerances up to TOL 

t .E-4 .  One would prefer these methods for problems with n < 10, because of 
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the large number of LU-decompositions. If stability requirements are weaker 
G R K 4 T  seems to be the faster and more precise routine. 
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