Fachbereich Mathematik & Informatik Freie Universität Berlin Prof. Dr. Ralf Kornhuber, Lasse Hinrichsen-Bischoff

Exercise 1 for the lecture NUMERICAL MATHEMATICS II WS 2021/2022 http://numerik.mi.fu-berlin.de/wiki/WS_2021/NumericsII.php

Due: Tutorial on November 2, 2021

Problem 1

Consider the ODE

$$x'(t) = f(x(t)), \qquad 0 < t \le T.$$

Assume that f is Lipschitz with constant L > 0 and let ϕ^t be the associated flow operator. Consider a numerical approximation scheme with discrete flow ψ^{τ} . Let ψ^{τ} be stable with a constant $\gamma > 0$ and consistent with order p.

Show that the associated one step method

$$x_{k+1} = \psi^{\tau} x_k, \qquad k = 0, \dots, n-1$$

is convergent with order p. Hint: Show by induction that

$$\|x(t_k) - x_k\| \le e^{t_k \gamma L} \sum_{i=0}^{k-1} \|\varepsilon_i\|$$

holds for $k = 1, \ldots, n - 1$ with

$$\varepsilon_k = \phi^{\tau} x_k - \psi^{\tau} x_k, \quad k = 0, \dots, n-1.$$

Problem 2

Let $\lambda \in \mathbb{R}$. For the linear differential equation

$$x'(t) = \lambda x(t), \qquad 0 < t \le T,$$

we consider the following numerical approximation scheme:

$$\tilde{x}_{k+1} = x_k + \tau \lambda x_k,$$

$$x_{k+1} = x_k + \frac{\tau}{2} \left(\lambda x_k + \lambda \tilde{x}_{k+1} \right)$$

- a) Write down explicitly the flow operator ϕ^t of the ODE and the discrete flow operator ψ^{τ} of the numerical scheme.
- b) Show that ψ^{τ} is consistent with order p = 2.
- c) Show that ψ^{τ} is stable.

Problem 3

a) Implement a function

exp_euler(x0, f, tau, n)

which returns a vector containing **n** steps of the explicit Euler method $x_{k+1} = x_k + \tau f(x_k)$ approximating the IVP x'(t) = f(x(t)) with initial value x0.

b) Analogously to a), implement a function

heun(x0, f, tau, n)

which returns a vector containing **n** steps of Heun's method which is the numerical scheme from the previous exercise.

c) Consider the IVP

$$x'(t) = -x,$$
 $0 < t \le T = 1.5,$
 $x(0) = 1,$

which has the unique solution $x(t) = e^{-t}$. Apply both methods to this problem using n = 2, ..., 1000 and $\tau = \frac{T}{n}$. Compute the respective errors

$$\max_{k=0,\dots,n} |x(t_k) - x_k|, \qquad t_k = k\tau,$$

and compare them by plotting the errors over n using a suitable scaling. Commend on the convergence rates.