Fachbereich Mathematik \& Informatik
Freie Universität Berlin
Prof. Dr. Ralf Kornhuber, Lasse Hinrichsen-Bischoff
Exercise 3 for the lecture
Numerical Mathematics II
WS 2021/2022
http://numerik.mi.fu-berlin.de/wiki/WS_2021/NumericsII.php

Due: Tutorial on November 16, 2021

Problem 1

Discuss the stability of the fixed point $x^{*}=0$ of the following ODEs
a)

$$
\begin{aligned}
& x_{1}^{\prime}=-x_{1}+x_{2}^{2} \\
& x_{2}^{\prime}=-\exp \left(x_{1}\right) x_{2}
\end{aligned}
$$

b)

$$
\begin{aligned}
& x_{1}^{\prime}=\cos \left(x_{1}\right)-\exp \left(-x_{2}\right) \\
& x_{2}^{\prime}=x_{1} x_{2}
\end{aligned}
$$

Problem 2

Consider the following system of ODEs

$$
x^{\prime}(t)=f(x(t)), \quad f=\left[\begin{array}{c}
x_{2} \tag{1}\\
\mu\left(1-x_{1}^{2}\right) x_{2}-x_{1}
\end{array}\right]
$$

where μ is a real parameter.
a) Calculate all fixed points of (1).
b) Discuss the (asymptotic) stability of these fixed points depending on parameter μ.

Problem 3

For the ODE from Task 2 solve the ODE numerically for $t \in[0,10]$ using either one of the methods you implemented on the first problem set or any ODE solver included in Python/Matlab. In the former case, you should use at least $n=1000$ steps.
Use the following initial value

$$
x_{0}=\binom{\delta}{\delta}
$$

with $\delta=0.01$.
For each of $\mu \in\{-1,0,1\}$, plot the phase diagram and comment on the stability of the fixed point $x^{*}=0$ considering your results from the previous task.
Hint: The phase diagram is a plot where the time-axis is only implicit. For each t_{k}, you want to plot the point $\left(x_{k 1}, x_{k 2}\right)$. It is also a good idea to highlight your initial value and the fixed point in the plot. More in the tutorial.

