Fachbereich Mathematik \& Informatik
Freie Universität Berlin
Prof. Dr. Ralf Kornhuber, Lasse Hinrichsen-Bischoff

> Exercise 7 for the lecture
> NUMERICAL MATHEMATICS II
> WS $2021 / 2022$
> http://numerik.mi.fu-berlin.de/wiki/WS_2021/NumericsII.php

Due: 11:59pm on Monday, December 13, 2021

Problem 1

Let $E: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a convex functional and consider the associated gradient flow

$$
\begin{equation*}
x^{\prime}(t)=-\nabla E(x(t)), \quad x(0)=x_{0}, \tag{1}
\end{equation*}
$$

where $\nabla E(x(t)) \in \mathbb{R}^{n}$ is the gradient of E at $x(t)$.
a) Show that $E(x(t)) \leq E\left(x_{0}\right)$ for all $t>0$. Show then that even $E(x(t))<E\left(x_{0}\right)$ if $\nabla E\left(x_{0}\right) \neq 0$.
b) Show that $x^{*} \in \mathbb{R}^{n}$ is a fixed point of (1) if and only if x^{*} is a minimum of E. Furthermore, show that each isolated fixed point of (1) is stable.
c) Assume that E is strictly convex. Show that each fixed point of (1) is asymptotically stable.
d) Let E be strictly convex and coercive. Then $x^{*}=\lim _{t \rightarrow \infty} x(t)$ is a fixed point of the gradient flow for all x_{0}.

Problem 2

For a linear problem $x^{\prime}=A x$, the Rosenbrock-Wanner method \begin{tabular}{c|c}
\mathbb{B} \& \mathbb{A}

\hline \& b^{T}

 is equivalent to the implicit Runge-Kutta method

$\mid \mathbb{B}$

b^{T}
\end{tabular} . Thus the stability function is given by

$$
\begin{equation*}
R(z)=1+z b^{T}(1-z \mathbb{B})^{-1} e, \quad e=(1, \ldots, 1)^{T} \in \mathbb{R}^{s} . \tag{2}
\end{equation*}
$$

Deduce from (2), that the condition $\sum_{i=1}^{s} b_{i}=1$ is sufficient for consistency (order $\mathrm{p}=1$).

Problem 3

Consider the linear scalar ODE

$$
x^{\prime}(t)=\lambda x(t), \quad x(0)=x_{0}
$$

a) Use the implicit Euler method $\Psi_{*}^{\tau} x=x+\tau \lambda\left(\Psi_{*}^{\tau} x\right)$ to implement a function that does one step of the extrapolation method using timestep tau:

```
extrapolation(x, lamda, tau, m)
```

I. e. your function should return $\Psi^{\tau} x=T_{m m}$ (using the notation from the lecture notes).
b) Let $\lambda=-1$ and $x_{0}=1$. For each of $m \in\{2, \ldots, 5\}$, compute the error

$$
\left|\exp (-\tau) x_{0}-\Psi^{\tau} x_{0}\right|
$$

for $\tau \in\left\{10^{-i}: i=1, \ldots, 10\right\}$. Plot these errors over τ using a suitable scaling. Do your computations confirm the consistency order m ?

Hint: You can use any interpolation method you want. However, the Aitken-Neville scheme might be particularly useful since you only need the point value $T_{m m}$.

