Fachbereich Mathematik & Informatik Freie Universität Berlin Prof. Dr. Ralf Kornhuber, Lasse Hinrichsen-Bischoff

Due: 11:59pm on Monday, December 13, 2021

Problem 1

Let $E: \mathbb{R}^n \to \mathbb{R}$ be a convex functional and consider the associated gradient flow

$$x'(t) = -\nabla E(x(t)), \qquad x(0) = x_0,$$
 (1)

where $\nabla E(x(t)) \in \mathbb{R}^n$ is the gradient of E at x(t).

- a) Show that $E(x(t)) \leq E(x_0)$ for all t > 0. Show then that even $E(x(t)) < E(x_0)$ if $\nabla E(x_0) \neq 0$.
- b) Show that $x^* \in \mathbb{R}^n$ is a fixed point of (1) if and only if x^* is a minimum of E. Furthermore, show that each isolated fixed point of (1) is stable.
- c) Assume that E is strictly convex. Show that each fixed point of (1) is asymptotically stable.
- d) Let E be strictly convex and coercive. Then $x^* = \lim_{t\to\infty} x(t)$ is a fixed point of the gradient flow for all x_0 .

Problem 2

For a linear problem x' = Ax, the Rosenbrock-Wanner method $\frac{\mathbb{B} \mid \mathbb{A}}{\mid b^T}$ is equivalent to the implicit Runge-Kutta method $\frac{\mid \mathbb{B}}{\mid b^T}$. Thus the stability function is given by

$$R(z) = 1 + zb^{T}(1 - z\mathbb{B})^{-1}e, \quad e = (1, \dots, 1)^{T} \in \mathbb{R}^{s}.$$
(2)

Deduce from (2), that the condition $\sum_{i=1}^{s} b_i = 1$ is sufficient for consistency (order p=1).

Problem 3

Consider the linear scalar ODE

$$x'(t) = \lambda x(t), \qquad x(0) = x_0.$$

a) Use the implicit Euler method $\Psi_*^{\tau} x = x + \tau \lambda(\Psi_*^{\tau} x)$ to implement a function that does one step of the extrapolation method using timestep tau:

extrapolation(x, lamda, tau, m)

I.e. your function should return $\Psi^{\tau} x = T_{mm}$ (using the notation from the lecture notes).

b) Let $\lambda = -1$ and $x_0 = 1$. For each of $m \in \{2, \ldots, 5\}$, compute the error

$$|\exp(-\tau)x_0 - \Psi^{\tau}x_0|$$

for $\tau \in \{10^{-i} : i = 1, ..., 10\}$. Plot these errors over τ using a suitable scaling. Do your computations confirm the consistency order m?

Hint: You can use any interpolation method you want. However, the Aitken–Neville scheme might be particularly useful since you only need the point value T_{mm} .