Fachbereich Mathematik \& Informatik
Freie Universität Berlin
Prof. Dr. Ralf Kornhuber, Lasse Hinrichsen-Bischoff

Exercise 10 for the lecture
 Numerical Mathematics II

WS 2021/2022
http://numerik.mi.fu-berlin.de/wiki/WS_2021/NumericsII.php

Due: 11:59pm on Monday, January 17, 2022

Problem 1

Consider the initial value problem

$$
\begin{equation*}
\binom{q^{\prime}}{p^{\prime}}=\binom{p}{-q}, \quad\binom{q}{p}(0)=\binom{q_{0}}{p_{0}} . \tag{1}
\end{equation*}
$$

Let the flow $\Phi^{t} x_{0}$ be the solution of 1$\}$ with initial condition $x_{0}=\binom{q_{0}}{p_{0}}$. Show that the flow map Φ^{t} conserves the Hamiltonian function

$$
H(q, p)=\frac{1}{2}\left(q^{2}+p^{2}\right)
$$

i.e. for all times t we have

$$
H\left(\Phi^{t} x_{0}\right)=H\left(x_{0}\right) .
$$

Furthermore, show that neither the explicit nor implicit Euler methods Ψ^{τ} conserve H i.e. $H\left(\Psi^{\tau} x\right) \neq H(x)$, for any $x \in \mathbb{R}^{2}$.

Problem 2

Let $\varphi: U \rightarrow V$ be a change of coordinates such that φ and φ^{-1} are continuously differentiable functions. If φ is a symplectic transformation, then it preserves the Hamiltonian character of an ODE in the following sense:
The Hamiltonian system $y^{\prime}=-J \nabla H(y)$ in the new coordinates $z=\varphi(y)$ becomes

$$
\begin{equation*}
z^{\prime}=-J \nabla K(z) \quad \text { where } K(z)=H\left(\varphi^{-1}(z)\right) . \tag{2}
\end{equation*}
$$

Conversely, if φ transforms every Hamiltonian system to another Hamiltonian system via (2), then φ is symplectic.

Problem 3

Consider the pendulum equation in polar coordinates

$$
\binom{q^{\prime}}{p^{\prime}}=\binom{\frac{1}{m} p}{-m \frac{g}{r_{0}} \cos q} \quad\binom{q}{p}(0)=\binom{q_{0}}{p_{0}}
$$

where q, g, m, and r_{0} denote the angle, the gravity, the mass and the radius, respectively.
a) Implement the symplectic Euler method for this equation in matlab as function [p, q, t] = SymplecticEuler (m, g, r0, p0, q0, I, tau), where (m, g, r0), ($p 0, q 0$), I, and tau denote the problem parameters, the initial values, the time interval and the step size, respectively.
b) Test your program with the radius $r_{0}=10 \mathrm{~cm}$, the mass $m=100 \mathrm{~g}$, and the gravity of the moon. Use the time interval $[0 s, 20 \mathrm{~s}]$ with the initial value $p_{0}=0 \frac{\mathrm{kgm}}{\mathrm{s}}$, $q_{0}=0 \mathrm{~m}$ for various time step sizes.
c) Plot the solution in the phase space, the solution in Euclidean coordinates, and the associated Hamiltonian H.
d) Show that the radius $r=\sqrt{x_{1}^{2}+x_{2}^{2}}$ is preserved if $g>0$.

