Fachbereich Mathematik & Informatik Freie Universität Berlin Prof. Dr. Ralf Kornhuber, Lasse Hinrichsen-Bischoff

Exercise 11 for the lecture NUMERICAL MATHEMATICS II WS 2021/2022 http://numerik.mi.fu-berlin.de/wiki/WS_2021/NumericsII.php

Due: 11:59pm on Monday, January 24, 2022

Problem 1

a) Assume that $A \in \mathbb{R}^{n \times n}$ is strongly diagonal dominant, i.e.

$$\sum_{j=1, j \neq i}^{n} |a_{ij}| < |a_{ii}|, \qquad \forall i = 1, \dots, n.$$
 (1)

Prove that the Jacobi iteration is globally convergent.

- b) Is (1) a necessary condition for global convergence?
- c) Let $\|\cdot\|$ be a norm on \mathbb{R}^n and $A \in \mathbb{R}^{n \times n}$, with $\|A\| < 1$. Show that for spectral radius of A it holds $\rho(A) < 1$.
- d) Let $A \in \mathbb{R}^{n \times n}$ be symmetric with $\rho(A) < 1$. Show that for some norm on \mathbb{R}^n it holds that ||A|| < 1.

Problem 2

Let $A, B \in \mathbb{R}^{n \times n}$ symmetric. Show that

$$\kappa(B^{-1}A) \le \frac{\mu_1}{\mu_0}$$

holds, if $B \in \mathbb{R}^{n \times n}$ is a preconditioner satisfying

$$\mu_0(Bx, x) \le (Ax, x) \le \mu_1(Bx, x) \quad \forall x \in \mathbb{R}^n$$

for some $0 < \mu_0, \mu_1 \in \mathbb{R}$.

Problem 3

Let $A \in \mathbb{R}^{n,n}$ be symmetric positive definite and $b \in \mathbb{R}^n$.

- a) Show that there is a strictly convex functional $J : \mathbb{R}^n \to \mathbb{R}$ such that the solution of the linear system Ax = b is the minimizer of J.
- b) Show that the Richardson iteration

$$x_{k+1} = x_k + \omega(b - Ax_k) \tag{2}$$

with $\omega \in \mathbb{R}$ is equivalent to the explicit Euler method for the gradient flow associated with J.

- c) Show that there is an $\omega > 0$ such that the Richardson iteration converges to the solution of the linear system without using the results of Chapter 4 on numerical linear algebra.
- d) Why is using an implicit Runge-Kutta method for the gradient flow not a good idea to solve the linear system ?