Fachbereich Mathematik \& Informatik
Freie Universität Berlin
Prof. Dr. Ralf Kornhuber, Lasse Hinrichsen-Bischoff
Exercise 12 for the lecture
Numerical Mathematics II
WS 2021/2022
http://numerik.mi.fu-berlin.de/wiki/WS_2021/NumericsII.php

Due: 11:59pm on Monday, January 31, 2022

Problem 1

Prove Proposition 4.4.3:
Let e_{i} be the i-th Cartesian unit vector, i.e. $\left(e_{i}\right)_{j}=\delta_{i j}$.
a) Show that for this particular choice, the Parallel direction correction (PDC) method is equivalent to the Jacobi method.
b) Similarly, show that the SDC method is equivalent to the Gauss-Seidel method.

Problem 2

The symmetric Gauß-Seidel method for the solution of a linear system with a s.p.d. matrix is obtained by applying one normal Gauß-Seidel step and one Gauß-Seidel step with the components in reversed order alternatingly. Give the iteration matrix and the generated preconditioner of the symmetric Gauß-Seidel method and show that the preconditioner is s.p.d..

Problem 3

Consider the the linear system

$$
\begin{equation*}
A U=b \tag{1}
\end{equation*}
$$

with the symmetric positive definite matrix $A \in \mathbb{R}^{n, n}$ and $b \in \mathbb{R}^{n}$.
a) Implement the Jacobi and the Gauß-Seidel methods
Jacobi(A, b, u0, tol, uexact)
and
GaussSeidel(A, b, u0, tol, uexact).

The iteration should stop if the energy norm $\|\cdot\|_{A}=\langle A \cdot, \cdot\rangle^{0.5}$ of the error is smaller than the tolerance tol. The methods should return a pair (u, n) where u is the approximated solution and n is the number of iterationsteps performed.
b) Define $h:=\frac{1}{N-1}$. Test your program with the matrix $A \in \mathbb{R}^{N}$

$$
A=\frac{1}{h^{2}}\left(\begin{array}{ccccccc}
1 & 0 & 0 & & \cdots & & 0 \\
1 / h^{2} & -2 / h^{2} & 1 / h^{2} & 0 & \cdots & & 0 \\
0 & 1 / h^{2} & -2 / h^{2} & 1 / h^{2} & 0 & \cdots & 0 \\
& & \vdots & & & & \\
0 & 0 & \cdots & 0 & 1 / h^{2} & -2 / h^{2} & 1 / h^{2} \\
0 & \cdots & & & & 0 & 1
\end{array}\right),
$$

i. e. having $2 / h^{2}$ on the diagonal and $-1 / h^{2} \mathrm{~s}$ on the off-diagonals execpt for the first and last row.

Hint: You can use spdiags in Matlab or scipy.sparse.spdiags in Python to create the sparse matrix.
Use the right hand side

$$
b=\frac{1}{h}\left(\begin{array}{c}
0 \\
1 \\
\vdots \\
1 \\
0
\end{array}\right) .
$$

c) Solve the system with varying values of N. Plot the number of required iteration steps over the number of unknowns N. Comment on what you found out.
d) Explain how a Gauss-Seidel step can be performed in $\mathcal{O}(N)$ if the matrix is sparse.

