Bildstreifen

 

 

BMS Logo Berlin
Mathematical
School
Seite Drucken Fenster schliessen
You are here: Home » Study » Archive » WS-2002 » Analysis-2
KLein
N.N.
 
19020

Analysis II

Di + Do 10-12, Arnimalle 2-6, SR 032
 
Übungen: Nach Vereinbarung
Sprechstunde:Fr 10:00 (bitte m�glichst per email anmelden: rupert.klein@zib.de)
Inhalt: Wir befinden uns mitten im Kapitel "Differentiation" und haben uns bereits die grunds�tzlichen Definitionen und elementaren Rechen- regeln erarbeitet. Wir besch�ftigen uns als n�chstes mit Extrem- werten, dem Mittelwertsatz, dem Konvexit�tsbegriff und in diesem Zusammenhang mit der H�lder-Ungleichung. Es folgen Iterationen, Fixpunkte und ein erster Einblick in das Newton-Verfahren zur Approximation der L�sungen nichtlinearer Gleichungen. Die Regeln von de l'Hospital schliessen das einf�hrende Kapitel zur Differen- tialrechnung ab.
Weiterf�hrend diskutieren wir Differentiation im Zusammenhang mit Potenzreihen, den Begriff der C1-Norm, Taylor-Entwicklungen und deren approximierende Eigenschaften, sowie einige konkrete Beispiele des bisherigen Wissens zur Differentiation (Polar- koordinaten, Bernoulli-Zahlen). In einem Ausblick betrachten wir die Differentiation ebener Kurven sowie die Differentiation im Komplexen und in der Ebene.
Im n�chsten grossen Abschnitt der Analysis II begegnen uns Regelfunktionen und, aufbauend auf diesen, der zugeh�rige Inte- gralbegriff. Es folgen die Haupts�tze der Integralrechnung und einige konkrete Beispiele, anhand derer wir das konkrete Handwerkszeug der Substitution und partiellen Integration kennenlernen. Wir stellen sodann den �ber Regelfunktionen eingef�hrten Integralbegriff den Integralbegriffen der Herren Riemann und Lebesque gegen�ber. Dies f�hrt uns auch auf Integralnormen und den Raum Lp. Es folgen die Taylorformel und ihre Konsequenzen, uneigentliche Integrale, Dirac-Folgen und das wichtige Kapitel �ber Fourier-Reihen.
Gegen Ende des Semesters betreten wir die metrischen R�ume, in denen wir auf Kugeln sowie offene und abgeschlossene Mengen treffen. Wir messen Hausdorffsche Abst�nde und diskutieren die Begriffe der Dichtheit, Kompaktheit und des Zusammenhangs. Zum Abschluss des Semesters interessieren uns Verbindungen zwischen dem neuen Begriff der Metrik und den schon etablierten Vorstellungen von Konvergenz und Stetigkeit.
Vorraussetzungen: Ab dem 2. Semester. Analysis I.
Perspektiven: Weitere Vorlesungen zur Analysis.

News




© 2007 Freie Universität Berlin Feedback | 05.01.2012