Numerik II

News and Important Remarks

Dates

Lecture Mon, 10:00 - 12:00
Wed, 10:00 - 12:00
Takustr. 9, SR 046
Arnimallee 3, HS 001
Tutorial Thu, 12:00 - 14:00 Takustr. 7, SR 2006 (ZIB)
Klausur Wed, 8.2.2012, 10:00 - 12:00 Arnimallee 3, HS 001
Nachklausur Thu, 15.3.2012, 10:00 - 12:00 Takustr. 7, HS (ZIB)

General Information

Description

Extending basic knowledge on odes from Numerik I, we first concentrate on one-step methods for stiff and differential-algebraic systems and then discuss fundamental properties of various multistep approaches. In the second part of this lecture we consider the numerical solution of eigenvalue problems and large linear systems. As a first glance in the direction of pdes, we plan to conclude with some remarks on the method of lines for linear and nonlinear parabolic problems.

Target Audience

Students of the Diploma, Bachelor, Master and BMS course of studies

Prerequisites:

Basics of calculus (Analysis I,II) linear algebra (Lineare Algebra I,II) and numerical analysis (Numerik I)

Registration

All participants should register at the KVV. In this way, we learn who is participating in the course and get a basis for organising the exercises. The overall number of participants is also necessary to justify the equipment of this course.

In addition, depending on your program of study, you have to register in the following way:

Exercises and Criteria for a Certificate

Tutorial & Exercises

Klausur

Criteria for the Certificate (Übungsschein)

Neccessary and sufficient for a certificate are:

Certificates are graded according to the result of the Klausur.

Exercises

Accompanying Material

Lecture Notes:

The lecture notes are available here (corrected version).

The lecture notes NumericsI, in german only.

Matlab:

Here you can find an introduction to Matlab (in german, sorry).

Literature

The following selection of textbooks can be found in the in the reserved books section (Handapparat) on numerical mathematics in the institutes library (Arnimallee 3) opposite to the reception and to the left of the door to the journals section.

  1. Deuflhard, Peter: Newton Methods for Nonlinear Problems. Springer, Berlin, 2004.
  2. Deuflhard, Peter und Folkmar Bornemann: Numerische Mathematik II - Gewöhnliche Differentialgleichungen. Walter de Gruyter, Berlin, 2002.
  3. Deuflhard, Peter und Folkmar Bornemann: Scientific computing with ordinary differential equations. Springer, Berlin, 2002.
  4. Deuflhard, Peter und Andreas Hohmann: Numerische Mathematik I - Eine algorithmisch orientierte Einführung. Walter de Gruyter, Berlin, 2002.
  5. Golub, Gene und Charles Van Loan: Matrix computations. Johns-Hopkins-University Press, Baltimore, 1993.
  6. Hairer, Ernst, Syvert Paul Nørsett und Gerhard Wanner: Solving Ordinary Differential Equations I - Nonstiff Problems, Band 8 der Reihe Springer Series in Computational Mathematics. Springer, Berlin, Heidelberg, New York, 1987.
  7. Hairer, Ernst und Gerhard Wanner: Solving Ordinary Differential Equations II - Stiff and Differential-Algebraic Problems, Band 14 der Reihe Springer Series in Computational Mathematics. Springer, Berlin, Heidelberg, New York, 1991.
  8. Meister, Andreas: Numerik linearer Gleichungssysteme. Vieweg, Braunschweig, 1999.
  9. Ortega, James und Werner Rheinboldt: Iterative solution of nonlinear equations in several variables. Academic Press, New York, 1972.
  10. Quarteroni, Alfio, Riccardo Sacco und Fausto Saleri: Numerische Mathematik 1. Springer, Berlin, 2002.
  11. Quarteroni, Alfio, Riccardo Sacco und Fausto Saleri: Numerische Mathematik 2. Springer, Berlin, 2002.
  12. Stoer, Josef und Roland Bulirsch: Numerische Mathematik - eine Einführung, Band 1. Springer, Berlin, 2005. aus dem FU-Netz auch Online verfügbar: http://www.springerlink.com/content/q1x448/fulltext.pdf.
  13. Stoer, Josef und Roland Bulirsch: Numerische Mathematik - eine Einführung, Band 2. Springer, Berlin, 2005. aus dem FU-Netz auch Online verfügbar: http://www.springerlink.com/content/v76507/fulltext.pdf.
  14. Walter, Wolfgang: Gewöhnliche Differentialgleichungen - eine Einführung. Springer, Berlin, 1996.
  15. Werner, Dirk: Funktionalanalysis. Springer, Berlin, 2000.

Further literature on numerics is deposited under the shelf marks H.1.0 and H.1.1.

Introductory literature in computer science can be found under XA.1, introductions in Unix operating system under XD.4.0.

Contact

Prof. Dr. Ralf Kornhuber Arnimalle 6, Room 130
Secretary Frau Nordt: Arnimallee 6, Room 131
Consultation-Hour: Do, 11-12 Uhr
email: kornhube{at}math.fu-berlin.de
Maren-Wanda Wolf email: mawolf{at}math.fu-berlin.de